11 research outputs found

    La primitividad de la infraestructura colombiana como agente reductor de las exportaciones de carbón térmico al mundo

    Get PDF
    El mercado del carbón térmico en Colombia tiene un gran potencial en el mundo, sin embargo las condiciones actuales de la infraestructura y los elevados costos logísticos del transporte no han permitido que este país logre asumir una posición dominante en determinados nichos de mercado al asegurar activos logísticos que hagan posible exportaciones rentables de carbón desde zonas mineras subdesarrolladas. Este ensayo pretende revelar el inconveniente que hace referencia a los aspectos críticos de las rutas logísticas claves para la exportación del carbón desde el interior del país, destacando el proyecto del ferrocarril del carare como una alternativa moderna que va a desarrollar las operaciones de minería en Colombia con el fin de alcanzar mejores oportunidades en el futuro cercan

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    XLVIII Coloquio Argentino de Estadística. VI Jornada de Educación Estadística Martha Aliaga Modalidad virtual

    Get PDF
    Esta publicación es una compilación de las actividades realizadas en el marco del XLVIII Coloquio Argentino de Estadística y la VI Jornada de Educación Estadística Martha Aliaga organizada por la Sociedad Argentina de Estadística y la Facultad de Ciencias Económicas. Se presenta un resumen para cada uno de los talleres, cursos realizados, ponencias y poster presentados. Para los dos últimos se dispone de un hipervínculo que direcciona a la presentación del trabajo. Ellos obedecen a distintas temáticas de la estadística con una sesión especial destinada a la aplicación de modelos y análisis de datos sobre COVID-19.Fil: Saino, Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Stimolo, María Inés. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Ortiz, Pablo. Universidad Nacional de córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Guardiola, Mariana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Aguirre, Alberto Frank Lázaro. Universidade Federal de Alfenas. Departamento de Estatística. Instituto de Ciências Exatas; Brasil.Fil: Alves Nogueira, Denismar. Universidade Federal de Alfenas. Departamento de Estatística. Instituto de Ciências Exatas; Brasil.Fil: Beijo, Luiz Alberto. Universidade Federal de Alfenas. Departamento de Estatística. Instituto de Ciências Exatas; Brasil.Fil: Solis, Juan Manuel. Universidad Nacional de Jujuy. Centro de Estudios en Bioestadística, Bioinformática y Agromática; Argentina.Fil: Alabar, Fabio. Universidad Nacional de Jujuy. Centro de Estudios en Bioestadística, Bioinformática y Agromática; Argentina.Fil: Ruiz, Sebastián León. Universidad Nacional de Jujuy. Centro de Estudios en Bioestadística, Bioinformática y Agromática; Argentina.Fil: Hurtado, Rafael. Universidad Nacional de Jujuy; Argentina.Fil: Alegría Jiménez, Alfredo. Universidad Técnica Federico Santa María. Departamento de Matemática; Chile.Fil: Emery, Xavier. Universidad de Chile. Departamento de Ingeniería en Minas; Chile.Fil: Emery, Xavier. Universidad de Chile. Advanced Mining Technology Center; Chile.Fil: Álvarez-Vaz, Ramón. Universidad de la República. Instituto de Estadística. Departamento de Métodos Cuantitativos; Uruguay.Fil: Massa, Fernando. Universidad de la República. Instituto de Estadística. Departamento de Métodos Cuantitativos; Uruguay.Fil: Vernazza, Elena. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Lezcano, Mikaela. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Urruticoechea, Alar. Universidad Católica del Uruguay. Facultad de Ciencias de la Salud. Departamento de Neurocognición; Uruguay.Fil: del Callejo Canal, Diana. Universidad Veracruzana. Instituto de Investigación de Estudios Superiores, Económicos y Sociales; México.Fil: Canal Martínez, Margarita. Universidad Veracruzana. Instituto de Investigación de Estudios Superiores, Económicos y Sociales; México.Fil: Ruggia, Ornela. CONICET; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de desarrollo rural; Argentina.Fil: Tolosa, Leticia Eva. Universidad Nacional de Córdoba; Argentina. Universidad Católica de Córdoba; Argentina.Fil: Rojo, María Paula. Universidad Nacional de Córdoba; Argentina.Fil: Nicolas, María Claudia. Universidad Nacional de Córdoba; Argentina. Universidad Católica de Córdoba; Argentina.Fil: Barbaroy, Tomás. Universidad Nacional de Córdoba; Argentina.Fil: Villarreal, Fernanda. CONICET, Universidad Nacional del Sur. Instituto de Matemática de Bahía Blanca (INMABB); Argentina.Fil: Pisani, María Virginia. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Quintana, Alicia. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Elorza, María Eugenia. CONICET. Universidad Nacional del Sur. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina.Fil: Peretti, Gianluca. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Buzzi, Sergio Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística y Matemática; Argentina.Fil: Settecase, Eugenia. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadísticas. Instituto de Investigaciones Teóricas y Aplicadas en Estadística; Argentina.Fil: Settecase, Eugenia. Department of Agriculture and Fisheries. Leslie Research Facility; Australia.Fil: Paccapelo, María Valeria. Department of Agriculture and Fisheries. Leslie Research Facility; Australia.Fil: Cuesta, Cristina. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadísticas. Instituto de Investigaciones Teóricas y Aplicadas en Estadística; Argentina.Fil: Saenz, José Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Luna, Silvia. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Paredes, Paula. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria. Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Maglione, Dora. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Rosas, Juan E. Instituto Nacional de Investigación Agropecuaria (INIA); Uruguay.Fil: Pérez de Vida, Fernando. Instituto Nacional de Investigación Agropecuaria (INIA); Uruguay.Fil: Marella, Muzio. Sociedad Anónima Molinos Arroceros Nacionales (SAMAN); Uruguay.Fil: Berberian, Natalia. Universidad de la República. Facultad de Agronomía; Uruguay.Fil: Ponce, Daniela. Universidad Estadual Paulista. Facultad de Medicina; Brasil.Fil: Silveira, Liciana Vaz de A. Universidad Estadual Paulista; Brasil.Fil: Freitas Galletti, Agda Jessica de. Universidad Estadual Paulista; Brasil.Fil: Bellassai, Juan Carlos. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigación y Estudios de Matemáticas (CIEM-Conicet); Argentina.Fil: Pappaterra, María Lucía. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigación y Estudios de Matemáticas (CIEM-Conicet); Argentina.Fil: Ojeda, Silvia María. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Ascua, Melina Belén. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Roldán, Dana Agustina. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Rodi, Ayrton Luis. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Ventre, Giuliana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: González, Agustina. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Palacio, Gabriela. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Bigolin, Sabina. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Ferrero, Susana. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Del Medico, Ana Paula. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR); Argentina.Fil: Pratta, Guillermo. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR); Argentina.Fil: Tenaglia, Gerardo. Instituto Nacional de Tecnología Agropecuaria. Instituto de Investigación y Desarrollo Tecnológico para la Agricultura Familiar; Argentina.Fil: Lavalle, Andrea. Universidad Nacional del Comahue. Departamento de Estadística; Argentina.Fil: Demaio, Alejo. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Hernández, Paz. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Di Palma, Fabricio. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Calizaya, Pablo. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Avalis, Francisca. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Caro, Norma Patricia. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Caro, Norma Patricia. Universidad Nacional de Córdoba. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Fernícola, Marcela. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Nuñez, Myriam. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Dundray, , Fabián. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Calviño, Amalia. Universidad de Buenos Aires. Instituto de Química y Metabolismo del Fármaco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Farfán Machaca, Yheni. Universidad Nacional de San Antonio Abad del Cusco. Departamento Académico de Matemáticas y Estadística; Argentina.Fil: Paucar, Guillermo. Universidad Nacional de San Antonio Abad del Cusco. Departamento Académico de Matemáticas y Estadística; Argentina.Fil: Coaquira, Frida. Universidad Nacional de San Antonio Abad del Cusco. Escuela de posgrado UNSAAC; Argentina.Fil: Ferreri, Noemí M. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Pascaner, Melina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Martinez, Facundo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Bossolasco, María Luisa. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina.Fil: Bortolotto, Eugenia B. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Bortolotto, Eugenia B. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Faviere, Gabriela S. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Faviere, Gabriela S. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Angelini, Julia. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Angelini, Julia. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Cervigni, Gerardo. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Cervigni, Gerardo. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Valentini, Gabriel. Instituto Nacional de Tecnología Agropecuaria. Estación Experimental Agropecuaria INTA San Pedro; Argentina.Fil: Chiapella, Luciana C.. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina.Fil: Chiapella, Luciana C. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina.Fil: Grendas, Leandro. Universidad Buenos Aires. Facultad de Medicina. Instituto de Farmacología; Argentina.Fil: Daray, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina.Fil: Daray, Federico. Universidad Buenos Aires. Facultad de Medicina. Instituto de Farmacología; Argentina.Fil: Leal, Danilo. Universidad Andrés Bello. Facultad de Ingeniería; Chile.Fil: Nicolis, Orietta. Universidad Andrés Bello. Facultad de Ingeniería; Chile.Fil: Bonadies, María Eugenia. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Ponteville, Christiane. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Catalano, Mara. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Catalano, Mara. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Dillon, Justina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Carnevali, Graciela H. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Justo, Claudio Eduardo. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Agrimensura. Grupo de Aplicaciones Matemáticas y Estadísticas (UIDET); Argentina.Fil: Iglesias, Maximiliano. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.Fil: Gómez, Pablo Sebastián. Universidad Nacional de Córdoba. Facultad de Ciencias Sociales. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Real, Ariel Hernán. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Vargas, Silvia Lorena. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: López Calcagno, Yanil. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Batto, Mabel. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Sampaolesi, Edgardo. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Tealdi, Juan Manuel. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Buzzi, Sergio Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística y Matemática; Argentina.Fil: García Bazán, Gaspar. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Monroy Caicedo, Xiomara Alejandra. Universidad Nacional de Rosario; Argentina.Fil: Bermúdez Rubio, Dagoberto. Universidad Santo Tomás. Facultad de Estadística; Colombia.Fil: Ricci, Lila. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Centro Marplatense de Investigaciones Matemáticas; Argentina.Fil: Kelmansky, Diana Mabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina.Fil: Rapelli, Cecilia. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: García, María del Carmen. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Bussi, Javier. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Méndez, Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística (IITAE); Argentina.Fil: García Mata, Luis Ángel. Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Acatlán; México.Fil: Ramírez González, Marco Antonio. Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Acatlán; México.Fil: Rossi, Laura. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentina.Fil: Vicente, Gonzalo. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentina. Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas; España.Fil: Scavino, Marco. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Estragó, Virginia. Presidencia de la República. Comisión Honoraria para la Salud Cardiovascular; Uruguay.Fil: Muñoz, Matías. Presidencia de la República. Comisión Honoraria para la Salud Cardiovascular; Uruguay.Fil: Castrillejo, Andrés. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Da Rocha, Naila Camila. Universidade Estadual Paulista Júlio de Mesquita Filho- UNESP. Departamento de Bioestadística; BrasilFil: Macola Pacheco Barbosa, Abner. Universidade Estadual Paulista Júlio de Mesquita Filho- UNESP; Brasil.Fil: Corrente, José Eduardo. Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP. Instituto de Biociencias. Departamento de Bioestadística; Brasil.Fil: Spataro, Javier. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Economía; Argentina.Fil: Salvatierra, Luca Mauricio. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Nahas, Estefanía. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Márquez, Viviana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Boggio, Gabriela. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Arnesi, Nora. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Harvey, Guillermina. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Settecase, Eugenia. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Wojdyla, Daniel. Duke University. Duke Clinical Research Institute; Estados Unidos.Fil: Blasco, Manuel. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Economía y Finanzas; Argentina.Fil: Stanecka, Nancy. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.Fil: Caro, Valentina. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.Fil: Sigal, Facundo. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Economía; Argentina.Fil: Blacona, María Teresa. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Escuela de Estadística; Argentina.Fil: Rodriguez, Norberto Vicente. Universidad Nacional de Tres de Febrero; Argentina.Fil: Loiacono, Karina Valeria. Universidad Nacional de Tres de Febrero; Argentina.Fil: García, Gregorio. Instituto Nacional de Estadística y Censos. Dirección Nacional de Metodología Estadística; Argentina.Fil: Ciardullo, Emanuel. Instituto Nacional de Estadística y Censos. Dirección Nacional de Metodología Estadística; Argentina.Fil: Ciardullo, Emanuel. Instituto Nacional de Estadística y Censos. Dirección Nacional de Metodología Estadística; Argentina.Fil: Funkner, Sofía. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: Dieser, María Paula. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: Martín, María Cristina. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: Martín, María Cristina. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Peitton, Lucas. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística; Argentina. Queensland Department of Agriculture and Fisheries; Australia.Fil: Borgognone, María Gabriela. Queensland Department of Agriculture and Fisheries; Australia.Fil: Terreno, Dante D. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Contabilidad; Argentina.Fil: Castro González, Enrique L. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Contabilidad; Argentina.Fil: Roldán, Janina Micaela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: González, Gisela Paula. CONICET. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Universidad Nacional del Sur; Argentina.Fil: De Santis, Mariana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Geri, Milva. CONICET. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina.Fil: Geri, Milva. Universidad Nacional del Sur. Departamento de Economía; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Marfia, Martín. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina.Fil: Kudraszow, Nadia L. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Matemática de La Plata; Argentina.Fil: Closas, Humberto. Universidad Tecnológica Nacional; Argentina.Fil: Amarilla, Mariela. Universidad Tecnológica Nacional; Argentina.Fil: Jovanovich, Carina. Universidad Tecnológica Nacional; Argentina.Fil: de Castro, Idalia. Universidad Nacional del Nordeste; Argentina.Fil: Franchini, Noelia. Universidad Nacional del Nordeste; Argentina.Fil: Cruz, Rosa. Universidad Nacional del Nordeste; Argentina.Fil: Dusicka, Alicia. Universidad Nacional del Nordeste; Argentina.Fil: Quaglino, Marta. Universidad Nacional de Rosario; Argentina.Fil: Kalauz, Roberto José Andrés. Investigador Independiente; Argentina.Fil: González, Mariana Verónica. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística y Matemáticas; Argentina.Fil: Lescano, Maira Celeste.

    Evaluation of postoperative pancreatic fistula prediction scales based on magnetic resonance imaging: A diagnostic test study

    No full text
    La fístula pancreática posoperatoria (POPF) es una de las complicaciones más temidas y frecuentes tras las pancreatoduodenectomías. Este trabajo tiene como objetivo evaluar el rendimiento de las diferentes escalas para predecir POPF, en donde la escala de Birmingham fue la escala con mayor rendimiento predictivo de POPF, es una escala sencilla con únicamente dos variables las cuales se pueden obtener en el preoperatorio con ayuda de la MRI.Postoperative pancreatic fistula (POPF) is one of the most feared and frequent complications after pancreaticoduodenectomies. This work aims to evaluate the performance of the different scales to predict POPF, where the Birmingham scale was the scale with the highest predictive performance of POPF, it is a simple scale with only two variables which can be obtained in the preoperative period with the help of MRI

    Indicadores de protección de la salud en la infancia: Bajo peso, sobrepeso y obesidad en niñas y niños de las escuelas públicas de la ciudad de Neiva-Colombia

    No full text
    The Childhood obesity is one of the most serious public health problems of the 21st century with a tendency to increase causing serious consequences in adulthood. The purpose of this study was to identify the prevalence of low weight, overweight, obesity and possible risk factors in public school students of Ciudad de Neiva. Using a cross-sectional study design in 423 girls and children between 6 and 14 years old from four schools in Neiva and applied to them instruments for the assessment of anthropometric parameters, physical activity, age, sex, origin, among others. During the analysis, logistic regression tests were used to identify possible causal association. The overall prevalence of low weight was 5.2%, overweight 15.1% and obesity exceeded 10.2%. The logistic regression analysis showed that the "low activity" and "inactive" students had a risk of being overweight (OR: 3.15, 95% CI: 1.71 - 5.84) and obesity (OR: 2.88; 95% CI: 1.39 - 6.03). The study showed that the prevalence of obesity and overweight disorders is high in this population group and is related to sedentary lifestyle. They are recommended to perform other prospective studies to achieve other possible risk factors in the family environment.La obesidad infantil es uno de los problemas de salud pública más graves del siglo XXI con una tendencia al aumento generando consecuencias graves en la adultez. El propósito de este estudio fue identificar la prevalencia de bajo peso, sobrepeso, obesidad y posibles factores de riesgos en los alumnos de escuelas de públicas de Ciudad de Neiva. Mediante un diseño de estudio de tipo corte transversal fueron incluidos 423 niños y niñas entre los 6 y 14 años de cuatro escuelas de Neiva y les fue aplicados instrumentos para la valoración de parámetros antropométricos, actividad física, edad, sexo, procedencia entre otros. Durante el análisis fueron empleadas pruebas de regresión logística para identificación de posible asociación causal. La prevalencia global de bajo peso fue de 5,2%, sobrepeso 15,1% y obesidad superó el 10,2%. El análisis de regresión logística demostró que los estudiantes “poco activos” e “inactivos” tenían un riesgo de presentar sobrepeso (OR: 3,15; IC95%: 1,71 - 5,84) y obesidad (OR: 2,88; IC95%: 1,39 - 6,03). El estudio demostró que la prevalencia de los trastornos obesidad y sobrepeso es alta en este grupo poblacional y esta relacionada con el sedentarismo. Son recomienda realizar estudios otros prospectivos para lograr identificar otros posibles factores de riesgo en el entorno familiar

    Determinantes sociales e inequidades en salud de niños y niñas con dificultades en el aprendizaje en las escuelas públicas de la ciudad de Neiva Colombia

    No full text
    The Learning difficulties are situations that affect the child population. These events are related to problems of inequities in the family and community environment generating even more unfavorable situations in mental health in the society. (1) The purpose of this study was the identification of these problems in learning and the possible associations with social determinants and inequities in the family environment in students of public schools in the city of Neiva. Using a cross-sectional study design, 483 boys and girls between 6 and 14 years old from four schools were included and their social and family environment was observed. A tool for the identification of problems in school abilities in children was applied to the group of teachers of the schools. During the analysis, Chi2 tests and logistic regression were used to identify possible causal association with social determinants in the student's environment. A total of 125 (25.9%) screenings were positive for learning difficulties in the study population. Most of the difficulties were cognitive (24%) and language problems (18%). These happened more frequently in the first grades of schooling. The logistic regression analysis showed that these difficulties were closely related to the socioeconomic level, the populations in the settlements and situations of intrafamily violence. The study showed that situations of poverty and conflict enhance the development of these difficulties. It is recommended to perform other studies that include variables related to maternal history and a history of perinatal diseasesLas dificultades de aprendizaje son situaciones que afectan la población infantil. Estos eventos están relacionados con problemas de inequidades en el entorno familiar y comunidad generando aún más situaciones desfavorables en salud mental en las sociedades. (1) El propósito de este estudio fue la identificación de estos problemas en el aprendizaje y las posibles asociaciones con determinantes sociales e inequidades en el entorno familiar en los estudiantes de escuelas de públicas de ciudad de Neiva. Mediante un diseño de estudio de tipo corte transversal fueron incluidos 483 niños y niñas entre los 6 y 14 años de cuatro escuelas y a los cuales les fue observado su entorno social y familiar. Al grupo de maestros de las escuelas les fue aplicado un instrumento para la identificación de problemas en habilidades escolares en los niños y niñas. Durante el análisis fueron empleadas pruebas de Chi2 y regresión logística para identificación de posible asociación causal con determinantes sociales en el entorno del estudiante. Un total de 125 (25,9 %) tamizajes fueron positivos para dificultades en el aprendizaje en la población del estudio. La mayor parte de las dificultades fueron las cognitivas (24 %) y problemas del lenguaje (18%). Estas sucedieron con mayor frecuencia en los primeros grados de escolaridad. El análisis de regresión logística demostró que estas dificultades tenían una estrecha relación con el nivel socioeconómico, las poblaciones en los asentamientos y situaciones de violencia intrafamiliar. El estudio demostró que las situaciones de pobreza y conflicto potencian al desarrollo de estas dificultades. Se recomienda realizar otros estudios que incluyan variables relacionadas con antecedentes maternos y antecedentes de enfermedades perinatales

    Orientaciones para la revisión, fortalecimiento y actualización de los manuales de convivencia escolar hacia la incorporación del enfoque de género, enfoque diferencial por orientación sexual e identidad de género y enfoque restaurativo.

    No full text
    Estas orientaciones nos permitirán trascender la noción de los manuales de convivencia como una herramienta estática centrada en generar sanciones, hacia una noción multidimensional y dinámica de la convivencia escolar, explorando la potencia pedagógica de reunirnos como comunidades educativas para identificar los retos que supone construir escuelas en línea con las realidades históricas y contextuales en las que nos encontramos

    NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics

    No full text
    Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non-detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio-temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large-scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data

    Reduction of cardiac imaging tests during the COVID-19 pandemic: The case of Italy. Findings from the IAEA Non-invasive Cardiology Protocol Survey on COVID-19 (INCAPS COVID)

    No full text
    Background: In early 2020, COVID-19 massively hit Italy, earlier and harder than any other European country. This caused a series of strict containment measures, aimed at blocking the spread of the pandemic. Healthcare delivery was also affected when resources were diverted towards care of COVID-19 patients, including intensive care wards. Aim of the study: The aim is assessing the impact of COVID-19 on cardiac imaging in Italy, compare to the Rest of Europe (RoE) and the World (RoW). Methods: A global survey was conducted in May–June 2020 worldwide, through a questionnaire distributed online. The survey covered three periods: March and April 2020, and March 2019. Data from 52 Italian centres, a subset of the 909 participating centres from 108 countries, were analyzed. Results: In Italy, volumes decreased by 67% in March 2020, compared to March 2019, as opposed to a significantly lower decrease (p &lt; 0.001) in RoE and RoW (41% and 40%, respectively). A further decrease from March 2020 to April 2020 summed up to 76% for the North, 77% for the Centre and 86% for the South. When compared to the RoE and RoW, this further decrease from March 2020 to April 2020 in Italy was significantly less (p = 0.005), most likely reflecting the earlier effects of the containment measures in Italy, taken earlier than anywhere else in the West. Conclusions: The COVID-19 pandemic massively hit Italy and caused a disruption of healthcare services, including cardiac imaging studies. This raises concern about the medium- and long-term consequences for the high number of patients who were denied timely diagnoses and the subsequent lifesaving therapies and procedures

    International Impact of COVID-19 on the Diagnosis of Heart Disease

    No full text
    Background: The coronavirus disease 2019 (COVID-19) pandemic has adversely affected diagnosis and treatment of noncommunicable diseases. Its effects on delivery of diagnostic care for cardiovascular disease, which remains the leading cause of death worldwide, have not been quantified. Objectives: The study sought to assess COVID-19's impact on global cardiovascular diagnostic procedural volumes and safety practices. Methods: The International Atomic Energy Agency conducted a worldwide survey assessing alterations in cardiovascular procedure volumes and safety practices resulting from COVID-19. Noninvasive and invasive cardiac testing volumes were obtained from participating sites for March and April 2020 and compared with those from March 2019. Availability of personal protective equipment and pandemic-related testing practice changes were ascertained. Results: Surveys were submitted from 909 inpatient and outpatient centers performing cardiac diagnostic procedures, in 108 countries. Procedure volumes decreased 42% from March 2019 to March 2020, and 64% from March 2019 to April 2020. Transthoracic echocardiography decreased by 59%, transesophageal echocardiography 76%, and stress tests 78%, which varied between stress modalities. Coronary angiography (invasive or computed tomography) decreased 55% (p &lt; 0.001 for each procedure). In multivariable regression, significantly greater reduction in procedures occurred for centers in countries with lower gross domestic product. Location in a low-income and lower–middle-income country was associated with an additional 22% reduction in cardiac procedures and less availability of personal protective equipment and telehealth. Conclusions: COVID-19 was associated with a significant and abrupt reduction in cardiovascular diagnostic testing across the globe, especially affecting the world's economically challenged. Further study of cardiovascular outcomes and COVID-19–related changes in care delivery is warranted
    corecore