145 research outputs found
Epifluorescent microscopy of edge-trimmed carbon fibre-reinforced polymers : an alternative to computed tomography scanning
X-Ray computed tomography (XCT) can be used to detect edge-milled carbon fibre-reinforced polymer (CFRP) defects. Significantly this method is able to show subsurface defects that cannot be captured by traditional methods such as stylus-based or more novel areal methods of surface quality measurement. While useful, this method can be prohibitive due to high equipment cost, scanning time and image resolution. XCT can often produce artefacts which falsely predict damage or obscure damage and depending on machine X-ray power often cannot resolve damage to fibre diameter which is critical when observing milled quality of the surface/subsurface. This study utilises epifluorescent (EF) optical microscopy to provide high-quality optical images as an alternative to XCT to observe through-depth damage of CFRP materials. The method of computing the novel damage criteria is presented, as well as the validation of the method which compares EF to XCT. Subsurface damage of fabric and unidirectional (UD) materials in 0°, 45°, 90° and −45° orientations to the cutting edge is observed to demonstrate typical defects. A novel metric resulting from the EF method provides a total area of damage when compared to a theoretically straight cut across the face of the edge-milled CFRP. The method shows that different subsurface damage exists for different fibre orientations to the cutting edge, highlighting the clear need for through-depth analysis of machined edges. In addition, the method is shown to be a suitable alternative to XCT with scope for further development of industrial aerospace and automotive quality control of machined CFRP parts
A comparative study of the effects of milling and abrasive water jet cutting on flexural performance of CFRP
Machining of carbon fibre reinforced polymers is part of the production process that introduces several challenges due to inherent characteristics of CFRPs such as non-homogeneity of their mechanical properties. A comparative analysis of conventional milling and abrasive water jet (AWJ) cutting is performed to quantify the effects of machining induced damage on flexural strength of woven CFRP laminates. The machined surfaces quality is characterized using optical and scanning electron microscopy methods prior to flexural mechanical testing. High-speed Digital Image Correlation technique is also used to measure deformation evolutions and determine fracture mechanisms in relation to the applied machining operation and produced machined surfaces. The effect of machining induced damage on strength of milled samples was less than expected with the AWJ processed samples having the least mechanical properties. The surface morphology analysis revealed that the entry and exit point of the water jet introduced severe surface and subsurface damage across the full thickness. The failure initiation sites were determined by strain distribution maps indicating that machining induced damage promotes failure of the tested CFRPs away from maximum compressive stress observed under the loading points
Chip formation mechanism during orthogonal cutting of rubber microparticles and silica nanoparticles modified epoxy of polymers
The addition of well-dispersed nanoparticles can significantly increase the mechanical properties and toughness of epoxy polymers. In this study, an epoxy resin was modified by addition of silica nanoparticles, (CTBN) rubber microparticles and a combination of both. An in-situ orthogonal cutting rig combined with high magnification and high-speed imaging system was used to determine the effects on the chip formation mechanism and machining induced damage to the material. This study indicates that chip formation in silica-modified epoxy is governed by a fracture process with large cracks both at the machined surface level and subsurface within the chip formation zone. The presence of rubber enables larger plastic deformation within the epoxy-modified polymer as the toughening mechanism of the rubber deflects the generated cracks within the primary deformation zone. The magnitude of machining induced damage was found to be lower for rubber microparticles and was correlated with a rubber toughening mechanism observed during cutting. The higher magnitude of machining induced damage of silica-modified epoxy was linked to the material’s poor resistance to crack initiation and growth. These findings of the effect of rubber microparticles and silica nanoparticles on chip formation process will give engineers a greater ability to create a trade-off between filler properties vs material properties vs machining induced damage during Design for Manufacturing (DFM) stages of a product design
BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma
We report that B cell–activating factor of the tumor necrosis factor (TNF) family (BAFF) is expressed in the normal human brain at ∼10% of that in lymphatic tissues (tonsils and adenoids) and is produced by astrocytes. BAFF was regularly detected by enzyme-linked immunosorbent assay in brain tissue lysates and in normal spinal fluid, and in astrocytes by double fluorescence microscopy. Cultured human astrocytes secreted functionally active BAFF after stimulation with interferon-γ and TNF-α via a furin-like protease-dependent pathway. BAFF secretion per cell was manifold higher in activated astrocytes than in monocytes and macrophages. We studied brain lesions with B cell components, and found that in multiple sclerosis plaques, BAFF expression was strongly up-regulated to levels observed in lymphatic tissues. BAFF was localized in astrocytes close to BAFF-R–expressing immune cells. BAFF receptors were strongly expressed in situ in primary central nervous system (CNS) lymphomas. This paper identifies astrocytes as a nonimmune source of BAFF. CNS-produced BAFF may support B cell survival in inflammatory diseases and primary B cell lymphoma
Metastasis associated in colorectal cancer 1 (MACC1) mRNA expression is enhanced in sporadic vestibular schwannoma and correlates to deafness
Vestibular schwannoma (VS) are benign cranial nerve sheath tumors of the vestibulocochlear nerve. Their incidence is mostly sporadic, but they can also be associated with NF2-related schwannomatosis (NF2), a hereditary tumor syndrome. Metastasis associated in colon cancer 1 (MACC1) is known to contribute to angiogenesis, cell growth, invasiveness, cell motility and metastasis of solid malignant cancers. In addition, MACC1 may be associated with nonsyndromic hearing impairment. Therefore, we evaluated whether MACC1 may be involved in the pathogenesis of VS. Sporadic VS, recurrent sporadic VS, NF2-associated VS, recurrent NF2-associated VS and healthy vestibular nerves were analyzed for MACC1 mRNA and protein expression by quantitative polymerase chain reaction and immunohistochemistry. MACC1 expression levels were correlated with the patients’ clinical course and symptoms. MACC1 mRNA expression was significantly higher in sporadic VS compared to NF2-associated VS (p < 0.001). The latter expressed similar MACC1 concentrations as healthy vestibular nerves. Recurrent tumors resembled the MACC1 expression of the primary tumors. MACC1 mRNA expression was significantly correlated with deafness in sporadic VS patients (p = 0.034). Therefore, MACC1 might be a new molecular marker involved in VS pathogenesis
Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features
Diffuse leptomeningeal glioneuronal tumors (DLGNT) represent rare CNS neoplasms which have been included in the 2016 update of the WHO classification. The wide spectrum of histopathological and radiological features can make this enigmatic tumor entity difficult to diagnose. In recent years, large-scale genomic and epigenomic analyses have afforded insight into key genetic alterations occurring in multiple types of brain tumors and provide unbiased, complementary tools to improve diagnostic accuracy. Through genome-wide DNA methylation screening of > 25,000 tumors, we discovered a molecularly distinct class comprising 30 tumors, mostly diagnosed histologically as DLGNTs. Copy-number profiles derived from the methylation arrays revealed unifying characteristics, including loss of chromosomal arm 1p in all cases. Furthermore, this molecular DLGNT class can be subdivided into two subgroups [DLGNT methylation class (MC)-1 and DLGNT methylation class (MC)-2], with all DLGNT-MC-2 additionally displaying a gain of chromosomal arm 1q. Co-deletion of 1p/19q, commonly seen in IDH-mutant oligodendroglioma, was frequently observed in DLGNT, especially in DLGNT-MC-1 cases. Both subgroups also had recurrent genetic alterations leading to an aberrant MAPK/ERK pathway, with KIAA1549:BRAF fusion being the most frequent event. Other alterations included fusions of NTRK1/2/3 and TRIM33:RAF1, adding up to an MAPK/ERK pathway activation identified in 80% of cases. In the DLGNT-MC-1 group, age at diagnosis was significantly lower (median 5 vs 14 years, p < 0.01) and clinical course less aggressive (5-year OS 100, vs 43% in DLGNT-MC-2). Our study proposes an additional molecular layer to the current histopathological classification of DLGNT, of particular use for cases without typical morphological or radiological characteristics, such as diffuse growth and radiologic leptomeningeal dissemination. Recurrent 1p deletion and MAPK/ERK pathway activation represent diagnostic biomarkers and therapeutic targets, respectively—laying the foundation for future clinical trials with, e.g., MEK inhibitors that may improve the clinical outcome of patients with DLGNT
DRD1 signaling modulates TrkB turnover and BDNF sensitivity in direct pathway striatal medium spiny neurons
Disturbed motor control is a hallmark of Parkinson's disease (PD). Cortico-striatal synapses play a central role in motor learning and adaption, and brain-derived neurotrophic factor (BDNF) from cortico-striatal afferents modulates their plasticity via TrkB in striatal medium spiny projection neurons (SPNs). We studied the role of dopamine in modulating the sensitivity of direct pathway SPNs (dSPNs) to BDNF in cultures of fluorescence-activated cell sorting (FACS)-enriched D1-expressing SPNs and 6-hydroxydopamine (6-OHDA)-treated rats. DRD1 activation causes enhanced TrkB translocation to the cell surface and increased sensitivity for BDNF. In contrast, dopamine depletion in cultured dSPN neurons, 6-OHDA-treated rats, and postmortem brain of patients with PD reduces BDNF responsiveness and causes formation of intracellular TrkB clusters. These clusters associate with sortilin related VPS10 domain containing receptor 2 (SORCS-2) in multivesicular-like structures, which apparently protects them from lysosomal degradation. Thus, impaired TrkB processing might contribute to disturbed motor function in PD.This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project 424778381 (TRR295, A05, A06, and A01), project SE697/7-1, and project 218894895 (INST93/761-1FUGG). R.L.M.was supported by the Alexander von Humboldt-Stiftung. V.P. and C.S.were supported by GRK2581 (P6) SPHINGOINF of the DFG.Work in the lab of R.M. was supported by grant PID2019-111693RB-100 from MICIN/AEI/10.13039/501100011033, the European Union’s Horizon 2020 research and innovation program, AND-PD (grant 84800),Next Generation EU/PRTR (MICIN/CSIC/PTI+NeuroAging), and CIBERNED, Instituto de Salud Carlos III. The graphical abstract was created with BioRender.com. We thank Drs.James Surmeier, Moses Chao, and Esther Asan for critical comments and suggestions
Natural and cryptic peptides dominate the immunopeptidome of atypical teratoid rhabdoid tumors
BACKGROUND: Atypical teratoid/rhabdoid tumors (AT/RT) are highly aggressive CNS tumors of infancy and early childhood. Hallmark is the surprisingly simple genome with inactivating mutations or deletions in the SMARCB1 gene as the oncogenic driver. Nevertheless, AT/RTs are infiltrated by immune cells and even clonally expanded T cells. However, it is unclear which epitopes T cells might recognize on AT/RT cells. METHODS: Here, we report a comprehensive mass spectrometry (MS)-based analysis of naturally presented human leukocyte antigen (HLA) class I and class II ligands on 23 AT/RTs. MS data were validated by matching with a human proteome dataset and exclusion of peptides that are part of the human benignome. Cryptic peptide ligands were identified using Peptide-PRISM. RESULTS: Comparative HLA ligandome analysis of the HLA ligandome revealed 55 class I and 139 class II tumor-exclusive peptides. No peptide originated from the SMARCB1 region. In addition, 61 HLA class I tumor-exclusive peptide sequences derived from non-canonically translated proteins. Combination of peptides from natural and cryptic class I and class II origin gave optimal representation of tumor cell compartments. Substantial overlap existed with the cryptic immunopeptidome of glioblastomas, but no concordance was found with extracranial tumors. More than 80% of AT/RT exclusive peptides were able to successfully prime CD8(+) T cells, whereas naturally occurring memory responses in AT/RT patients could only be detected for class II epitopes. Interestingly, >50% of AT/RT exclusive class II ligands were also recognized by T cells from glioblastoma patients but not from healthy donors. CONCLUSIONS: These findings highlight that AT/RTs, potentially paradigmatic for other pediatric tumors with a low mutational load, present a variety of highly immunogenic HLA class I and class II peptides from canonical as well as non-canonical protein sources. Inclusion of such cryptic peptides into therapeutic vaccines would enable an optimized mapping of the tumor cell surface, thereby reducing the likelihood of immune evasion
Analysis of tumor microenvironment composition in vestibular schwannomas: insights into NF2-associated and sporadic variations and their clinical correlations
ObjectiveVestibular schwannomas (VS), benign tumors stemming from the eighth cranial nerve’s Schwann cells, are associated with Merlin gene mutations, inflammation, and the tumor microenvironment (TME), influencing tumor initiation, maintenance, and potential neural dysfunction. Understanding TME composition holds promise for systemic therapeutic interventions, particularly for NF2-related schwannomatosis.MethodologyA retrospective analysis of paraffin-embedded tissue from 40 patients (2013-2020), evenly divided by neurofibromatosis type 2 status, with further stratification based on magnetic resonance imaging (MRI) progression and hearing function. Immunohistochemistry assessed TME components, including T-cell markers (CD4, CD8, CD25), NK cells (CD7), and macrophages (CD14, CD68, CD163, CCR2). Fiji software facilitated image analysis.ResultsT-cell markers (CD4, CD8, CD7) exhibited low expression in VS, with no significant NF2-associated vs. sporadic distinctions. Macrophage-related markers (CD14, CD68, CD163, CCR2) showed significantly higher expression (CD14: p = 0.0187, CD68: p < 0.0001, CD163: p = 0.0006, CCR2: p < 0.0001). CCR2 and CD163 significantly differed between NF2-associated and sporadic VS. iNOS, an M1-macrophage marker, was downregulated. CD25, a regulatory T-cell marker, correlated significantly with tumor growth dynamics (p = 0.016).DiscussionImmune cells, notably monocytes and macrophages, crucially contribute to VS pathogenesis in both NF2-associated and sporadic cases. Significant differences in CCR2 and CD163 expression suggest distinct immune responses. Regulatory T-cells may serve as growth dynamic markers. These findings highlight immune cells as potential biomarkers and therapeutic targets for managing VS
- …