3,569 research outputs found
Low-field microwave absorption in epitaxial La-Sr-Mn-O films resulting from the angle-tuned ferromagnetic resonance in the multidomain state
We studied magnetic-field induced microwave absorption in 100-200 nm thick
LaSrMnO films on SrTiO substrate and found a
low-field absorption with a very peculiar angular dependence: it appears only
in the oblique field and is absent both in the parallel and in the
perpendicular orientations. We demonstrate that this low-field absorption
results from the ferromagnetic resonance in the multidomain state (domain-mode
resonance). Its unusual angular dependence arises from the interplay between
the parallel component of the magnetic field that drives the film into
multidomain state and the perpendicular field component that controls the
domain width through its effect on domain wall energy. The low-field microwave
absorption in the multidomain state can be a tool to probe domain structure in
magnetic films with in-plane magnetization.Comment: 9 pages, 9 Figure
Le nouveau droit de la protection de l'adulte et de l'enfant en quelques points : Code Civil et pratique gériatrique
Functional characterization of the Pneumocystis jirovecii potential drug targets dhfs and abz2 involved in folate biosynthesis.
Pneumocystis species are fungal parasites colonizing mammal lungs with strict host specificity. Pneumocystis jirovecii is the human-specific species and can turn into an opportunistic pathogen causing severe pneumonia in immunocompromised individuals. This disease is currently the second most frequent life-threatening invasive fungal infection worldwide. The most efficient drug, cotrimoxazole, presents serious side effects, and resistance to this drug is emerging. The search for new targets for the development of new drugs is thus of utmost importance. The recent release of the P. jirovecii genome sequence opens a new era for this task. It can now be carried out on the actual targets to be inhibited instead of on those of the relatively distant model Pneumocystis carinii, the species infecting rats. We focused on the folic acid biosynthesis pathway because (i) it is widely used for efficient therapeutic intervention, and (ii) it involves several enzymes that are essential for the pathogen and have no human counterparts. In this study, we report the identification of two such potential targets within the genome of P. jirovecii, the dihydrofolate synthase (dhfs) and the aminodeoxychorismate lyase (abz2). The function of these enzymes was demonstrated by the rescue of the null allele of the orthologous gene of Saccharomyces cerevisiae
Nonresonant microwave absorption in epitaxial La-Sr-Mn-O films and its relation to colossal magnetoresistance
We study magnetic-field-dependent nonresonant microwave absorption and
dispersion in thin LaSrMnO films and show that it
originates from the colossal magnetoresistance. We develop the model for
magnetoresistance of a thin ferromagnetic film in oblique magnetic field. The
model accounts fairly well for our experimental findings, as well as for
results of other researchers. We demonstrate that nonresonant microwave
absorption is a powerful technique that allows contactless measurement of
magnetic properties of thin films, including magnetoresistance, anisotropy
field and coercive field.Comment: 20 pages, 11 figure
Statistical inference of the generation probability of T-cell receptors from sequence repertoires
Stochastic rearrangement of germline DNA by VDJ recombination is at the
origin of immune system diversity. This process is implemented via a series of
stochastic molecular events involving gene choices and random nucleotide
insertions between, and deletions from, genes. We use large sequence
repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta
chains to infer the statistical properties of these basic biochemical events.
Since any given CDR3 sequence can be produced in multiple ways, the probability
distribution of hidden recombination events cannot be inferred directly from
the observed sequences; we therefore develop a maximum likelihood inference
method to achieve this end. To separate the properties of the molecular
rearrangement mechanism from the effects of selection, we focus on
non-productive CDR3 sequences in T-cell DNA. We infer the joint distribution of
the various generative events that occur when a new T-cell receptor gene is
created. We find a rich picture of correlation (and absence thereof), providing
insight into the molecular mechanisms involved. The generative event statistics
are consistent between individuals, suggesting a universal biochemical process.
Our distribution predicts the generation probability of any specific CDR3
sequence by the primitive recombination process, allowing us to quantify the
potential diversity of the T-cell repertoire and to understand why some
sequences are shared between individuals. We argue that the use of formal
statistical inference methods, of the kind presented in this paper, will be
essential for quantitative understanding of the generation and evolution of
diversity in the adaptive immune system.Comment: 20 pages, including Appendi
Intrinsic Low Temperature Paramagnetism in B-DNA
We present experimental study of magnetization in -DNA in
conjunction with structural measurements. The results show the surprising
interplay between the molecular structures and their magnetic property. In the
B-DNA state, -DNA exhibits paramagnetic behaviour below 20 K that is
non-linear in applied magnetic field whereas in the A-DNA state, remains
diamagnetic down to 2 K. We propose orbital paramagnetism as the origin of the
observed phenomena and discuss its relation to the existence of long range
coherent transport in B-DNA at low temperature.Comment: 5 pages, 4 figures, submitted to Physical Review Letters October 200
A core genetic module : the Mixed Feedback Loop
The so-called Mixed Feedback Loop (MFL) is a small two-gene network where
protein A regulates the transcription of protein B and the two proteins form a
heterodimer. It has been found to be statistically over-represented in
statistical analyses of gene and protein interaction databases and to lie at
the core of several computer-generated genetic networks. Here, we propose and
mathematically study a model of the MFL and show that, by itself, it can serve
both as a bistable switch and as a clock (an oscillator) depending on kinetic
parameters. The MFL phase diagram as well as a detailed description of the
nonlinear oscillation regime are presented and some biological examples are
discussed. The results emphasize the role of protein interactions in the
function of genetic modules and the usefulness of modelling RNA dynamics
explicitly.Comment: To be published in Physical Review
- …
