3,569 research outputs found

    Low-field microwave absorption in epitaxial La-Sr-Mn-O films resulting from the angle-tuned ferromagnetic resonance in the multidomain state

    Full text link
    We studied magnetic-field induced microwave absorption in 100-200 nm thick La0.7_{0.7}Sr0.3_{0.3}MnO3_{3} films on SrTiO3_{3} substrate and found a low-field absorption with a very peculiar angular dependence: it appears only in the oblique field and is absent both in the parallel and in the perpendicular orientations. We demonstrate that this low-field absorption results from the ferromagnetic resonance in the multidomain state (domain-mode resonance). Its unusual angular dependence arises from the interplay between the parallel component of the magnetic field that drives the film into multidomain state and the perpendicular field component that controls the domain width through its effect on domain wall energy. The low-field microwave absorption in the multidomain state can be a tool to probe domain structure in magnetic films with in-plane magnetization.Comment: 9 pages, 9 Figure

    Functional characterization of the Pneumocystis jirovecii potential drug targets dhfs and abz2 involved in folate biosynthesis.

    Get PDF
    Pneumocystis species are fungal parasites colonizing mammal lungs with strict host specificity. Pneumocystis jirovecii is the human-specific species and can turn into an opportunistic pathogen causing severe pneumonia in immunocompromised individuals. This disease is currently the second most frequent life-threatening invasive fungal infection worldwide. The most efficient drug, cotrimoxazole, presents serious side effects, and resistance to this drug is emerging. The search for new targets for the development of new drugs is thus of utmost importance. The recent release of the P. jirovecii genome sequence opens a new era for this task. It can now be carried out on the actual targets to be inhibited instead of on those of the relatively distant model Pneumocystis carinii, the species infecting rats. We focused on the folic acid biosynthesis pathway because (i) it is widely used for efficient therapeutic intervention, and (ii) it involves several enzymes that are essential for the pathogen and have no human counterparts. In this study, we report the identification of two such potential targets within the genome of P. jirovecii, the dihydrofolate synthase (dhfs) and the aminodeoxychorismate lyase (abz2). The function of these enzymes was demonstrated by the rescue of the null allele of the orthologous gene of Saccharomyces cerevisiae

    Nonresonant microwave absorption in epitaxial La-Sr-Mn-O films and its relation to colossal magnetoresistance

    Get PDF
    We study magnetic-field-dependent nonresonant microwave absorption and dispersion in thin La0.7_{0.7}Sr0.3_{0.3}MnO3_{3} films and show that it originates from the colossal magnetoresistance. We develop the model for magnetoresistance of a thin ferromagnetic film in oblique magnetic field. The model accounts fairly well for our experimental findings, as well as for results of other researchers. We demonstrate that nonresonant microwave absorption is a powerful technique that allows contactless measurement of magnetic properties of thin films, including magnetoresistance, anisotropy field and coercive field.Comment: 20 pages, 11 figure

    Statistical inference of the generation probability of T-cell receptors from sequence repertoires

    Full text link
    Stochastic rearrangement of germline DNA by VDJ recombination is at the origin of immune system diversity. This process is implemented via a series of stochastic molecular events involving gene choices and random nucleotide insertions between, and deletions from, genes. We use large sequence repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta chains to infer the statistical properties of these basic biochemical events. Since any given CDR3 sequence can be produced in multiple ways, the probability distribution of hidden recombination events cannot be inferred directly from the observed sequences; we therefore develop a maximum likelihood inference method to achieve this end. To separate the properties of the molecular rearrangement mechanism from the effects of selection, we focus on non-productive CDR3 sequences in T-cell DNA. We infer the joint distribution of the various generative events that occur when a new T-cell receptor gene is created. We find a rich picture of correlation (and absence thereof), providing insight into the molecular mechanisms involved. The generative event statistics are consistent between individuals, suggesting a universal biochemical process. Our distribution predicts the generation probability of any specific CDR3 sequence by the primitive recombination process, allowing us to quantify the potential diversity of the T-cell repertoire and to understand why some sequences are shared between individuals. We argue that the use of formal statistical inference methods, of the kind presented in this paper, will be essential for quantitative understanding of the generation and evolution of diversity in the adaptive immune system.Comment: 20 pages, including Appendi

    Intrinsic Low Temperature Paramagnetism in B-DNA

    Full text link
    We present experimental study of magnetization in λ\lambda-DNA in conjunction with structural measurements. The results show the surprising interplay between the molecular structures and their magnetic property. In the B-DNA state, λ\lambda-DNA exhibits paramagnetic behaviour below 20 K that is non-linear in applied magnetic field whereas in the A-DNA state, remains diamagnetic down to 2 K. We propose orbital paramagnetism as the origin of the observed phenomena and discuss its relation to the existence of long range coherent transport in B-DNA at low temperature.Comment: 5 pages, 4 figures, submitted to Physical Review Letters October 200

    A core genetic module : the Mixed Feedback Loop

    Full text link
    The so-called Mixed Feedback Loop (MFL) is a small two-gene network where protein A regulates the transcription of protein B and the two proteins form a heterodimer. It has been found to be statistically over-represented in statistical analyses of gene and protein interaction databases and to lie at the core of several computer-generated genetic networks. Here, we propose and mathematically study a model of the MFL and show that, by itself, it can serve both as a bistable switch and as a clock (an oscillator) depending on kinetic parameters. The MFL phase diagram as well as a detailed description of the nonlinear oscillation regime are presented and some biological examples are discussed. The results emphasize the role of protein interactions in the function of genetic modules and the usefulness of modelling RNA dynamics explicitly.Comment: To be published in Physical Review
    corecore