66 research outputs found

    Comprehensive computational design of mCreI homing endonuclease cleavage specificity for genome engineering

    Get PDF
    Homing endonucleases (HEs) cleave long (∼20 bp) DNA target sites with high site specificity to catalyze the lateral transfer of parasitic DNA elements. In order to determine whether comprehensive computational design could be used as a general strategy to engineer new HE target site specificities, we used RosettaDesign (RD) to generate 3200 different variants of the mCreI LAGLIDADG HE towards 16 different base pair positions in the 22 bp mCreI target site. Experimental verification of a range of these designs demonstrated that over 2/3 (24 of 35 designs, 69%) had the intended new site specificity, and that 14 of the 15 attempted specificity shifts (93%) were achieved. These results demonstrate the feasibility of using structure-based computational design to engineer HE variants with novel target site specificities to facilitate genome engineering

    Comprehensive homing endonuclease target site specificity profiling reveals evolutionary constraints and enables genome engineering applications

    Get PDF
    Homing endonucleases (HEs) promote the evolutionary persistence of selfish DNA elements by catalyzing element lateral transfer into new host organisms. The high site specificity of this lateral transfer reaction, termed homing, reflects both the length (14–40 bp) and the limited tolerance of target or homing sites for base pair changes. In order to better understand molecular determinants of homing, we systematically determined the binding and cleavage properties of all single base pair variant target sites of the canonical LAGLIDADG homing endonucleases I-CreI and I-MsoI. These Chlorophyta algal HEs have very similar three-dimensional folds and recognize nearly identical 22 bp target sites, but use substantially different sets of DNA-protein contacts to mediate site-specific recognition and cleavage. The site specificity differences between I-CreI and I-MsoI suggest different evolutionary strategies for HE persistence. These differences also provide practical guidance in target site finding, and in the generation of HE variants with high site specificity and cleavage activity, to enable genome engineering applications

    Numt-Mediated Double-Strand Break Repair Mitigates Deletions during Primate Genome Evolution

    Get PDF
    Non-homologous end joining (NHEJ) is the major mechanism of double-strand break repair (DSBR) in mammalian cells. NHEJ has traditionally been inferred from experimental systems involving induced double strand breaks (DSBs). Whether or not the spectrum of repair events observed in experimental NHEJ reflects the repair of natural breaks by NHEJ during chromosomal evolution is an unresolved issue. In primate phylogeny, nuclear DNA sequences of mitochondrial origin, numts, are inserted into naturally occurring chromosomal breaks via NHEJ. Thus, numt integration sites harbor evidence for the mechanisms that act on the genome over evolutionary timescales. We have identified 35 and 55 lineage-specific numts in the human and chimpanzee genomes, respectively, using the rhesus monkey genome as an outgroup. One hundred and fifty two numt-chromosome fusion points were classified based on their repair patterns. Repair involving microhomology and repair leading to nucleotide additions were detected. These repair patterns are within the experimentally determined spectrum of classical NHEJ, suggesting that information from experimental systems is representative of broader genetic loci and end configurations. However, in incompatible DSBR events, small deletions always occur, whereas in 54% of numt integration events examined, no deletions were detected. Numts show a statistically significant reduction in deletion frequency, even in comparison to DSBR involving filler DNA. Therefore, numts show a unique mechanism of integration via NHEJ. Since the deletion frequency during numt insertion is low, native overhangs of chromosome breaks are preserved, allowing us to determine that 24% of the analyzed breaks are cohesive with overhangs of up to 11 bases. These data represent, to the best of our knowledge, the most comprehensive description of the structure of naturally occurring DSBs. We suggest a model in which the sealing of DSBs by numts, and probably by other filler DNA, prevents nuclear processing of DSBs that could result in deleterious repair

    Xpf and Not the Fanconi Anaemia Proteins or Rev3 Accounts for the Extreme Resistance to Cisplatin in Dictyostelium discoideum

    Get PDF
    Organisms like Dictyostelium discoideum, often referred to as DNA damage “extremophiles”, can survive exposure to extremely high doses of radiation and DNA crosslinking agents. These agents form highly toxic DNA crosslinks that cause extensive DNA damage. However, little is known about how Dictyostelium and the other “extremophiles” can tolerate and repair such large numbers of DNA crosslinks. Here we describe a comprehensive genetic analysis of crosslink repair in Dictyostelium discoideum. We analyse three gene groups that are crucial for a replication-coupled repair process that removes DNA crosslinks in higher eukarya: The Fanconi anaemia pathway (FA), translesion synthesis (TLS), and nucleotide excision repair. Gene disruption studies unexpectedly reveal that the FA genes and the TLS enzyme Rev3 play minor roles in tolerance to crosslinks in Dictyostelium. However, disruption of the Xpf nuclease subcomponent results in striking hypersensitivity to crosslinks. Genetic interaction studies reveal that although Xpf functions with FA and TLS gene products, most Xpf mediated repair is independent of these two gene groups. These results suggest that Dictyostelium utilises a distinct Xpf nuclease-mediated repair process to remove crosslinked DNA. Other DNA damage–resistant organisms and chemoresistant cancer cells might adopt a similar strategy to develop resistance to DNA crosslinking agents

    Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas

    Get PDF
    DNA damage repair (DDR) pathways modulate cancer risk, progression, and therapeutic response. We systematically analyzed somatic alterations to provide a comprehensive view of DDR deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations included epigenetic silencing of the direct repair genes EXO5, MGMT, and ALKBH3 in 3c20% of samples. Homologous recombination deficiency (HRD) was present at varying frequency in many cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was associated with worse outcomes in several other cancers. Protein structure-based analyses allowed us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-based classifier developed from gene expression data allowed us to identify alterations that phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human cancers have functional consequences that may determine cancer progression and guide therapy. Knijnenburg et al. present The Cancer Genome Atlas (TCGA) Pan-Cancer analysis of DNA damage repair (DDR) deficiency in cancer. They use integrative genomic and molecular analyses to identify frequent DDR alterations across 33 cancer types, correlate gene- and pathway-level alterations with genome-wide measures of genome instability and impaired function, and demonstrate the prognostic utility of DDR deficiency scores

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Myriolecis massei, a new species of Lecanoraceae from the coasts of the Armorican Massif in Western Europe

    No full text
    International audienceA new species of Lecanora s.l. (Lecanoraceae) has been found in several localities on the coasts of the Armorican Massif (Brittany, Normandy, Channel Islands), only on siliceous rocks in the supralittoral zone. It is particularly distinguished by its well-developed thallus reacting C+ orange in the cortex and containing chlorinated xanthones identified by HPLC-DAD-MS. Placed in the new genus Myriolecis, it is described in this study as Myriolecis massei sp. nov. and is compared to similar maritime species containing chloroxanthones. A key is given to European maritime species of Myriolecis reacting C+. Copyright © 2018 by The American Bryological Society, Inc

    Population regulation through recruitment, adult fidelity and non breeding in a colonial bird, the Kittiwake Rissa tridactyla

    No full text
    A long term study of the Kittiwake colonies of Cap Sizun (Brittany, France) shows that, even though Kittiwakes usually recruit at the age of 4, the population growth rate from year to year is highly correlated with the breeding success of the previous year. This is due to a strong recruitment, a large proportion of breeders, and a high adult fidelity after years of high fecondity. Furthermore, for a given individual breeding performance (breeding success or failure), adult fidelity to the colony and the proportion of breeders in the following year increase with the breeding success of the colony in which they bred in the previous year. This leads us to propose a mechanism of population regulation through Attraction, Recruitment, Non-breeding, and Adult Fidelity, in which breeding success and social context―two characteristics which reflect environmental quality―play prominent role

    Syndrome neurologique mortel chez une tourterelle turque

    No full text
    La paralysie à tiques chez les oiseaux sauvages est probablement fréquente mais rarement observée. Les auteurs rapportent le cas d’une tourterelle turque (S. decaocto) chez laquelle se trouvaient associés un syndrome neurologique mortel et la fixation au-dessus de l’œil droit d’une femelle d’Ixodes pari. L’étude virologique des tissus de l’oiseau et de la tique a été négative. Il pouvait donc s’agir d’une paralysie à tiques ou d’un équivalent mineur de ce syndrome. Par ailleurs, c’est la première fois que la tourterelle turque est signalée comme hôte d’I. pari
    corecore