1,412 research outputs found
Statistics of Pressure Fluctuations in Decaying, Isotropic Turbulence
We present results from a systematic direct-numerical simulation study of
pressure fluctuations in an unforced, incompressible, homogeneous, and
isotropic, three-dimensional turbulent fluid. At cascade completion,
isosurfaces of low pressure are found to be organised as slender filaments,
whereas the predominant isostructures appear sheet-like. We exhibit several new
results, including plots of probability distributions of the spatial
pressure-difference, the pressure-gradient norm, and the eigenvalues of the
pressure-hessian tensor. Plots of the temporal evolution of the mean
pressure-gradient norm, and the mean eigenvalues of the pressure-hessian tensor
are also exhibited. We find the statistically preferred orientations between
the eigenvectors of the pressure-hessian tensor, the pressure-gradient, the
eigenvectors of the strain-rate tensor, the vorticity, and the velocity.
Statistical properties of the non-local part of the pressure-hessian tensor are
also exhibited, for the first time. We present numerical tests (in the viscous
case) of some conjectures of Ohkitani [Phys. Fluids A {\bf 5}, 2570 (1993)] and
Ohkitani and Kishiba [Phys. Fluids {\bf 7}, 411 (1995)] concerning the
pressure-hessian and the strain-rate tensors, for the unforced, incompressible,
three-dimensional Euler equations.Comment: 10 pages, 29 figures, Accepted for publication in Physical Review
A search for strong, ordered magnetic fields in Herbig Ae/Be stars
The origin of magnetic fields in intermediate-mass and high-mass stars is
fundamentally a mystery. Clues toward solving this basic astrophysical problem
can likely be found at the pre-main sequence (PMS) evolutionary stage. With
this work, we perform the largest and most sensitive search for magnetic fields
in pre-main sequence Herbig Ae/Be (HAeBe) stars. Sixty-eight observations of 50
HAeBe stars have been obtained in circularly polarised light using the FORS1
spectropolarimeter at the ESO VLT. An analysis of both Balmer and metallic
lines reveals the possible presence of weak longitudinal magnetic fields in
photospheric lines of two HAeBe stars, HD 101412 and BF Ori. The intensity of
the longitudinal fields detected in HD 101412 and BF Ori suggest that they
correspond to globally-ordered magnetic fields with surface intensities of
order 1 kG. Monte Carlo simulations of the longitudinal field measurements of
the undetected stars allow us to place an upper limits of about 300 G on the
general presence of aligned magnetic dipole magnetic fields, and of about 500 G
on perpendicular dipole fields. We find that the observed bulk incidence of
magnetic HAeBe stars in our sample is 8-12%, in good agreement with that of
magnetic main sequence stars of similar masses. We also find that the rms
longitudinal field intensity of magnetically-detected HAeBe stars is similar to
that of Ap stars and consistent with magnetic flux conservation during stellar
evolution. These results are all in agreement with the hypothesis that the
magnetic fields of main sequence Ap/Bp stars are fossils, which already exist
within the stars at the pre-main sequence stage. Finally, we explore the
ability of our new magnetic data to constrain magnetospheric accretion in
Herbig Ae/Be stars.Comment: Accepted by Monthly Notices of the Royal Astronomical Society, 2007
January 11. Received 2007 January 11; in original form 2006 August 18. The
paper contains 18 pages, 11 figures and 2 table
A near-infrared variability campaign of TMR-1: New light on the nature of the candidate protoplanet TMR-1C
(abridged) We present a near-infrared (NIR) photometric variability study of
the candidate protoplanet, TMR-1C, located at a separation of about 10" (~1000
AU) from the Class I protobinary TMR-1AB in the Taurus molecular cloud. Our
campaign was conducted between October, 2011, and January, 2012. We were able
to obtain 44 epochs of observations in each of the H and Ks filters. Based on
the final accuracy of our observations, we do not find any strong evidence of
short-term NIR variability at amplitudes of >0.15-0.2 mag for TMR-1C or
TMR-1AB. Our present observations, however, have reconfirmed the
large-amplitude long-term variations in the NIR emission for TMR-1C, which were
earlier observed between 1998 and 2002, and have also shown that no particular
correlation exists between the brightness and the color changes. TMR-1C became
brighter in the H-band by ~1.8 mag between 1998 and 2002, and then fainter
again by ~0.7 mag between 2002 and 2011. In contrast, it has persistently
become brighter in the Ks-band in the period between 1998 and 2011. The (H-Ks)
color for TMR-1C shows large variations, from a red value of 1.3+/-0.07 and
1.6+/-0.05 mag in 1998 and 2000, to a much bluer color of -0.1+/-0.5 mag in
2002, and then again a red color of 1.1+/-0.08 mag in 2011. The observed
variability from 1998 to 2011 suggests that TMR-1C becomes fainter when it gets
redder, as expected from variable extinction, while the brightening observed in
the Ks-band could be due to physical variations in its inner disk structure.
The NIR colors for TMR-1C obtained using the high precision photometry from
1998, 2000, and 2011 observations are similar to the protostars in Taurus,
suggesting that it could be a faint dusty Class I source. Our study has also
revealed two new variable sources in the vicinity of TMR-1AB, which show
long-term variations of ~1-2 mag in the NIR colors between 2002 and 2011.Comment: Accepted in A&
Weak magnetic fields in white dwarfs and their direct progenitors?
We have carried out a re-analysis of polarimetric data of central stars of
planetary nebulae, hot subdwarfs, and white dwarfs taken with FORS1 (FOcal
Reducer and low dispersion Spectrograph) on the VLT (Very Large Telescope), and
added a large number of new observations in order to increase the sample. A
careful analysis of the observations using only one wavelength calibration for
the polarimetrically analysed spectra and for all positions of the retarder
plate of the spectrograph is crucial in order to avoid spurious signals. We
find that the previous detections of magnetic fields in subdwarfs and central
stars could not be confirmed while about 10% of the observed white dwarfs have
magnetic fields at the kilogauss level.Comment: 6 pages, Proceedings of the 18th European White Dwarf Workshop, ASP
Conference Serie
Two new bright Ae stars
Two newly identified Ae stars, nu Cyg and kappa UMa, were discovered in the
course of the Magnetic Survey of Bright MS stars (Monin et al. 2002). We pre
sent their Halpha profiles along with measurements of their equivalent width
and parameters of emission features. Emission in the Halpha line of nu Cyg is
variable on a time scale of 3 years. kappa UMa exhibits weak emission which is
rather stable. The emission is thought to arise from a circumstellar disk, and
we have estimated the size of that disk.Both new emission stars are IRAS
sources. Their IR color excesses are consistent with those of classical Ae
stars. Thus, nu Cyg and kappa UMa appear not to belong to the class of Herbig
Ae/Be stars. We argue that the frequency of Ae stars may be underestimated due
to the difficulty of detection of weak emission in some A stars.Comment: 6 pages,3 figures, submitted to A&
Refined masses and distance of the young binary Haro 1-14 C
We aim to refine the dynamical masses of the individual component of the
low-mass pre-main sequence binary Haro 1-14 C. We combine the data of the
preliminary orbit presented previously with new interferometric observations
obtained with the four 8m telescopes of the Very Large Telescope
Interferometer. The derived masses are M_a=0.905\pm0.043\,\Msun and
M_b=0.308\pm0.011\,\Msun for the primary and secondary components,
respectively. This is about five times better than the uncertainties of the
preliminary orbit. Moreover, the possibility of larger masses is now securely
discarded. The new dynamical distance, pc, is smaller than the
distance to the Ophiuchus core with a significance of . Fitting
the spectral energy distribution yields apparent diameters of
\phi_a=0.13\pm0.01\mas and \phi_b=0.10\pm0.01\mas (corresponding to
\Ra=1.50\,\Rsun and \Rb=1.13\,\Rsun) and a visual extinction of
. Although the revised orbit has a nearly edge-on geometry, the
system is unlikely to be a long-period eclipsing binary. The secondary in
Haro~1-14C is one of the few low-mass, pre-main sequence stars with an
accurately determined dynamical mass and distance
NICMOS Images of the GG Tau Circumbinary Disk
We present deep, near-infrared images of the circumbinary disk surrounding
the pre-main-sequence binary star, GG Tau A, obtained with NICMOS aboard the
Hubble Space Telescope. The spatially resolved proto-planetary disk scatters
roughly 1.5% of the stellar flux, with a near-to-far side flux ratio of ~1.4,
independent of wavelength, and colors that are comparable to the central
source; all of these properties are significantly different from the earlier
ground-based observations. New Monte Carlo scattering simulations of the disk
emphasize that the general properties of the disk, such as disk flux, near side
to far side flux ratio and integrated colors, can be approximately reproduced
using ISM-like dust grains, without the presence of either circumstellar disks
or large dust grains, as had previously been suggested. A single parameter
phase function is fitted to the observed azimuthal variation in disk flux,
providing a lower limit on the median grain size of 0.23 micron. Our analysis,
in comparison to previous simulations, shows that the major limitation to the
study of grain growth in T Tauri disk systems through scattered light lies in
the uncertain ISM dust grain properties. Finally, we use the 9 year baseline of
astrometric measurements of the binary to solve the complete orbit, assuming
that the binary is coplanar with the circumbinary ring. We find that the
estimated 1 sigma range on disk inner edge to semi-major axis ratio, 3.2 <
Rin/a < 6.7, is larger than that estimated by previous SPH simulations of
binary-disk interactions.Comment: 40 pages, 8 postscript figures, accepted for publication in Ap
On the Nature of Incompressible Magnetohydrodynamic Turbulence
A novel model of incompressible magnetohydrodynamic turbulence in the
presence of a strong external magnetic field is proposed for explanation of
recent numerical results. According to the proposed model, in the presence of
the strong external magnetic field, incompressible magnetohydrodynamic
turbulence becomes nonlocal in the sense that low frequency modes cause
decorrelation of interacting high frequency modes from the inertial interval.
It is shown that the obtained nonlocal spectrum of the inertial range of
incompressible magnetohydrodynamic turbulence represents an anisotropic
analogue of Kraichnan's nonlocal spectrum of hydrodynamic turbulence. Based on
the analysis performed in the framework of the weak coupling approximation,
which represents one of the equivalent formulations of the direct interaction
approximation, it is shown that incompressible magnetohydrodynamic turbulence
could be both local and nonlocal and therefore anisotropic analogues of both
the Kolmogorov and Kraichnan spectra are realizable in incompressible
magnetohydrodynamic turbulence.Comment: Physics of Plasmas (Accepted). A small chapter added about 2D MHD
turbulenc
Sign-symmetry of temperature structure functions
New scalar structure functions with different sign-symmetry properties are
defined. These structure functions possess different scaling exponents even
when their order is the same. Their scaling properties are investigated for
second and third orders, using data from high-Reynolds-number atmospheric
boundary layer. It is only when structure functions with disparate
sign-symmetry properties are compared can the extended self-similarity detect
two different scaling ranges that may exist, as in the example of convective
turbulence.Comment: 18 pages, 5 figures, accepted for publication in Physical Review
- …