research

A search for strong, ordered magnetic fields in Herbig Ae/Be stars

Abstract

The origin of magnetic fields in intermediate-mass and high-mass stars is fundamentally a mystery. Clues toward solving this basic astrophysical problem can likely be found at the pre-main sequence (PMS) evolutionary stage. With this work, we perform the largest and most sensitive search for magnetic fields in pre-main sequence Herbig Ae/Be (HAeBe) stars. Sixty-eight observations of 50 HAeBe stars have been obtained in circularly polarised light using the FORS1 spectropolarimeter at the ESO VLT. An analysis of both Balmer and metallic lines reveals the possible presence of weak longitudinal magnetic fields in photospheric lines of two HAeBe stars, HD 101412 and BF Ori. The intensity of the longitudinal fields detected in HD 101412 and BF Ori suggest that they correspond to globally-ordered magnetic fields with surface intensities of order 1 kG. Monte Carlo simulations of the longitudinal field measurements of the undetected stars allow us to place an upper limits of about 300 G on the general presence of aligned magnetic dipole magnetic fields, and of about 500 G on perpendicular dipole fields. We find that the observed bulk incidence of magnetic HAeBe stars in our sample is 8-12%, in good agreement with that of magnetic main sequence stars of similar masses. We also find that the rms longitudinal field intensity of magnetically-detected HAeBe stars is similar to that of Ap stars and consistent with magnetic flux conservation during stellar evolution. These results are all in agreement with the hypothesis that the magnetic fields of main sequence Ap/Bp stars are fossils, which already exist within the stars at the pre-main sequence stage. Finally, we explore the ability of our new magnetic data to constrain magnetospheric accretion in Herbig Ae/Be stars.Comment: Accepted by Monthly Notices of the Royal Astronomical Society, 2007 January 11. Received 2007 January 11; in original form 2006 August 18. The paper contains 18 pages, 11 figures and 2 table

    Similar works

    Available Versions

    Last time updated on 01/04/2019