1,432 research outputs found
Direct measurements of anisotropic energy transfers in a rotating turbulence experiment
We investigate experimentally the influence of a background rotation on the
energy transfers in decaying grid turbulence. The anisotropic energy flux
density, , where
is the vector velocity increment over separation , is
determined for the first time using Particle Image Velocimetry. We show that
rotation induces an anisotropy of the energy flux , which
leads to an anisotropy growth of the energy distribution , in agreement with the K\'arm\'an-Howarth-Monin equation.
Surprisingly, our results prove that this anisotropy growth is essentially
driven by a nearly radial, but orientation-dependent, energy flux density .Comment: to appear in Physical Review Letters (July 8, 2011 issue
New Brown Dwarfs and an Updated Initial Mass Function in Taurus
I have performed a search for young low-mass stars and brown dwarfs (BDs) in
2 regions encompassing a total area of 4 deg^2 in the Taurus star-forming
region, discovering 15 new members of Taurus. In addition, I present 7 new
members outside of these areas from the initial stage of a survey of all of
Taurus. These 22 objects exhibit spectral types of M4.5-M9.25 and masses of
0.3-0.015 M_sun according to the theoretical evolutionary models of Baraffe and
Chabrier, 7 of which are likely to be BDs. Emission in H(alpha), He I, Ca II,
[O I], and [S II] and excess emission in optical and near-IR bands among some
of these objects suggest the presence of accretion, outflows, and circumstellar
disks. The results from the 4 deg^2 survey have been combined with previous
studies of Taurus to arrive at an IMF for a total area of 12.4 deg^2. As in the
previous IMFs for Taurus, the updated IMF peaks at a higher mass (0.8 M_sun)
than the mass functions in IC 348 and Orion (0.1-0.2 M_sun). Meanwhile, the
deficit of BDs in Taurus appears to be less significant (x1.4-1.8) than found
in earlier studies (x2) because of a slightly higher BD fraction in the new IMF
for Taurus and a lower BD fraction in the new spectroscopic IMF for the
Trapezium from Slesnick and coworkers. The spatial distribution of the low-mass
stars and BDs discovered in the two new survey areas closely matches that of
the more massive members. Thus, on the degree size scales (~3 pc) probed to
date, there is no indication that BDs form through ejection.Comment: 35 pages, The Astrophysical Journal, 2004, v617 (December 20
Universal dissipation scaling for non-equilibrium turbulence
It is experimentally shown that the non-classical high Reynolds number energy
dissipation behaviour, ,
observed during the decay of fractal square grid-generated turbulence is also
manifested in decaying turbulence originating from various regular grids. For
sufficiently high values of the global Reynolds numbers , .Comment: 5 pages, 6 figure
Aspergillus fumigatus preexposure worsens pathology and improves control of Mycobacterium abscessus pulmonary infection in mice
ABSTRACT
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Mutations in this chloride channel lead to mucus accumulation, subsequent recurrent pulmonary infections, and inflammation, which, in turn, cause chronic lung disease and respiratory failure. Recently, rates of nontuberculous mycobacterial (NTM) infections in CF patients have been increasing. Of particular relevance is infection with
Mycobacterium abscessus
, which causes a serious, life-threatening disease and constitutes one of the most antibiotic-resistant NTM species. Interestingly, an increased prevalence of NTM infections is associated with worsening lung function in CF patients who are also coinfected with
Aspergillus fumigatus
. We established a new mouse model to investigate the relationship between
A. fumigatus
and
M. abscessus
pulmonary infections. In this model, animals exposed to
A. fumigatus
and coinfected with
M. abscessus
exhibited increased lung inflammation and decreased mycobacterial burden compared with those of mice infected with
M. abscessus
alone. This increased control of
M. abscessus
infection in coinfected mice was mucus independent but dependent on both transcription factors T-box 21 (Tbx21) and retinoic acid receptor (RAR)-related orphan receptor gamma t (RORγ-t), master regulators of type 1 and type 17 immune responses, respectively. These results implicate a role for both type 1 and type 17 responses in
M. abscessus
control in
A. fumigatus
-coinfected lungs. Our results demonstrate that
A. fumigatus
, an organism found commonly in CF patients with NTM infection, can worsen pulmonary inflammation and impact
M. abscessus
control in a mouse model.
</jats:p
On the Nature of Incompressible Magnetohydrodynamic Turbulence
A novel model of incompressible magnetohydrodynamic turbulence in the
presence of a strong external magnetic field is proposed for explanation of
recent numerical results. According to the proposed model, in the presence of
the strong external magnetic field, incompressible magnetohydrodynamic
turbulence becomes nonlocal in the sense that low frequency modes cause
decorrelation of interacting high frequency modes from the inertial interval.
It is shown that the obtained nonlocal spectrum of the inertial range of
incompressible magnetohydrodynamic turbulence represents an anisotropic
analogue of Kraichnan's nonlocal spectrum of hydrodynamic turbulence. Based on
the analysis performed in the framework of the weak coupling approximation,
which represents one of the equivalent formulations of the direct interaction
approximation, it is shown that incompressible magnetohydrodynamic turbulence
could be both local and nonlocal and therefore anisotropic analogues of both
the Kolmogorov and Kraichnan spectra are realizable in incompressible
magnetohydrodynamic turbulence.Comment: Physics of Plasmas (Accepted). A small chapter added about 2D MHD
turbulenc
Infrared Speckle Interferometry with 2-D Arrays
We describe results from a program of speckle interferometry with two-dimensional infrared array detectors. Analysis of observations of eta Carinae made with 58 x 62 InSb detector are discussed. The data have been analyzed with both the Labeyrie autocorrelation, a deconvolution of shift-and-add data, and a phase restoration process. Development of a new camera based on a much lower noise HgCdTe detector will lead to a significant improvement i limiting magnitude for IR speckle interferometry
Passive tracer in a flow corresponding to a two dimensional stochastic Navier Stokes equations
In this paper we prove the law of large numbers and central limit theorem for
trajectories of a particle carried by a two dimensional Eulerian velocity
field. The field is given by a solution of a stochastic Navier--Stokes system
with a non-degenerate noise. The spectral gap property, with respect to
Wasserstein metric, for such a system has been shown in [9]. In the present
paper we show that a similar property holds for the environment process
corresponding to the Lagrangian observations of the velocity. In consequence we
conclude the law of large numbers and the central limit theorem for the tracer.
The proof of the central limit theorem relies on the martingale approximation
of the trajectory process
On the Detection of Magnetic Helicity
Magnetic fields in various astrophysical settings may be helical and, in the
cosmological context, may provide a measure of primordial CP violation during
baryogenesis. Yet it is difficult, even in principle, to devise a scheme by
which magnetic helicity may be detected, except in some very special systems.
We propose that charged cosmic rays originating from known sources may be
useful for this purpose. We show that the correlator of the arrival momenta of
the cosmic rays is sensitive to the helicity of an intervening magnetic field.
If the sources themselves are not known, the method may still be useful
provided we have some knowledge of their spatial distribution.Comment: 5 pages, 1 figure, discussions and references added, submited to
Phys. Rev.
Generalized vortex-model for the inverse cascade of two-dimensional turbulence
We generalize Kirchhoff's point vortex model of two-dimensional fluid motion
to a rotor model which exhibits an inverse cascade by the formation of rotor
clusters. A rotor is composed of two vortices with like-signed circulations
glued together by an overdamped spring. The model is motivated by a treatment
of the vorticity equation representing the vorticity field as a superposition
of vortices with elliptic Gaussian shapes of variable widths, augmented by a
suitable forcing mechanism. The rotor model opens up the way to discuss the
energy transport in the inverse cascade on the basis of dynamical systems
theory.Comment: 14 pages, 21 figure
Non-gaussian probability distribution functions in two dimensional Magnetohydrodynamic turbulence
Intermittency in MHD turbulence has been analyzed using high resolution 2D
numerical simulations. We show that the Probability Distribution Functions
(PDFs) of the fluctuations of the Elsasser fields, magnetic field and velocity
field depend on the scale at hand, that is they are self-affine. The departure
of the PDFs from a Gaussian function can be described through the scaling
behavior of a single parameter lambda_r^2 obtained by fitting the PDFs with a
given curve stemming from the analysis of a multiplicative model by Castaing et
al. (1990). The scaling behavior of the parameter lambda_r^2 can be used to
extract informations about the intermittency. A comparison of intermittency
properties in different MHD turbulent flows is also performed.Comment: 7 pages, with 5 figure
- …