7 research outputs found

    Learning to Learn: Theta Oscillations Predict New Learning, which Enhances Related Learning and Neurogenesis

    Get PDF
    Animals in the natural world continuously encounter learning experiences of varying degrees of novelty. New neurons in the hippocampus are especially responsive to learning associations between novel events and more cells survive if a novel and challenging task is learned. One might wonder whether new neurons would be rescued from death upon each new learning experience or whether there is an internal control system that limits the number of cells that are retained as a function of learning. In this experiment, it was hypothesized that learning a task that was similar in content to one already learned previously would not increase cell survival. We further hypothesized that in situations in which the cells are rescued hippocampal theta oscillations (3–12 Hz) would be involved and perhaps necessary for increasing cell survival. Both hypotheses were disproved. Adult male Sprague-Dawley rats were trained on two similar hippocampus-dependent tasks, trace and very-long delay eyeblink conditioning, while recording hippocampal local-field potentials. Cells that were generated after training on the first task were labeled with bromodeoxyuridine and quantified after training on both tasks had ceased. Spontaneous theta activity predicted performance on the first task and the conditioned stimulus induced a theta-band response early in learning the first task. As expected, performance on the first task correlated with performance on the second task. However, theta activity did not increase during training on the second task, even though more cells were present in animals that had learned. Therefore, as long as learning occurs, relatively small changes in the environment are sufficient to increase the number of surviving neurons in the adult hippocampus and they can do so in the absence of an increase in theta activity. In conclusion, these data argue against an upper limit on the number of neurons that can be rescued from death by learning

    The relative amplitude of hippocampal theta activity predicted learning the first task and increased in response to the conditioned stimulus early in learning the first task.

    No full text
    <p>A) Twenty-two animals had correctly placed electrodes in the dentate gyrus. One electrode per animal was selected for analysis based on the location of the electrode tip. B) Representative examples of single-trial local-field potential (LFP) recordings from the dentate gyrus during the presentation of the conditioning stimuli. The white bar indicates the white-noise conditioned stimulus and the grey bar indicates the stimulation of the eyelid used as an unconditioned stimulus. C) Fast Fourier transform of spontaneous hippocampal LFPs illustrates a peak in power at the theta band (3–12 Hz). D) The relative power of spontaneous hippocampal Type 2 theta activity recorded prior to any training predicted learning the first task. E) The presentation of the conditioned stimulus induced a response within the theta-band early in training on the first task. In E, statistically significant results of two-factor repeated measures ANOVAs are indicated (1.). If an interaction was detected, a separate ANOVA for each level was conducted (2.). Asterisks refer to statistical significance: * p<.05, ** p<.01, *** p<.001.</p

    Schematic depicting the timeline of the experiment (A) and the two training protocols used (B and C).

    No full text
    <p>Rats were trained for 4 days with either trace (B) or very-long delay eyeblink conditioning (C). Local-field potentials (LFPs) from the dentate gyrus were also recorded during training. Several days after training on the first task had ceased BrdU was injected i.p. to label dividing cells. A week after the BrdU injection, rats were trained again, but now with the other task, while recording LFPs. The order of the tasks was counterbalanced. All rats were sacrificed 21 days after the BrdU injection to examine the number of surviving immature cells in the dentate gyrus. In B and C, the white bar indicates the white-noise conditioned stimulus and the grey bar indicates the stimulation to the eyelid used as an unconditioned stimulus. Representative learned responses obtained from single-trial electromyogram recordings are also presented.</p

    Learning was facilitated and predicted by previous learning of a similar task and very-long delay (VLD) conditioning was easier to learn than trace conditioning.

    No full text
    <p>In A learned responding is plotted in bins of 20 trials for the first 100 trials of each task and in bins of 100 trials from there on. The conditioned stimulus did not elicit eyeblinks before conditioning (Task 1 at 0). Learned responding increased during the initial training experience (Task 1), with elevated responding in animals trained with VLD conditioning compared to the group trained in trace conditioning. During training on the second task (Task 2), animals initially trained with the trace procedure rapidly acquired the VLD conditioned response whereas those initially trained with VLD required more trials to learn to time the conditioned response during the trace interval. Both groups learned to respond adaptively by the end of training (Task 2 at 800). B) Animals that learned well during the first task learned well during training on the second, related task. C) The highest percentage of learned responses attained during any given 100-trial block (Peak performance %) in the first phase of training (untrained) was significantly higher as a consequence of VLD than trace conditioning. When training was preceded by training on a similar task (pre-trained), the rats learned equally well both during VLD and trace conditioning. In A, statistically significant results of two-factor repeated measures ANOVAs are indicated (1.). If an interaction was detected, a separate ANOVA for each level was conducted (2.). Asterisks refer to statistical significance: * p<.05, ** p<.01, *** p<.001.</p

    A dataset of acoustic measurements from soundscapes collected worldwide during the COVID-19 pandemic

    No full text
    International audiencePolitical responses to the COVID-19 pandemic led to changes in city soundscapes around the globe. From March to October 2020, a consortium of 261 contributors from 35 countries brought together by the Silent Cities project built a unique soundscape recordings collection to report on local acoustic changes in urban areas. We present this collection here, along with metadata including observational descriptions of the local areas from the contributors, open-source environmental data, open-source confinement levels and calculation of acoustic descriptors. We performed a technical validation of the dataset using statistical models run on a subset of manually annotated soundscapes. Results confirmed the large-scale usability of ecoacoustic indices and automatic sound event recognition in the Silent Cities soundscape collection. We expect this dataset to be useful for research in the multidisciplinary field of environmental sciences
    corecore