128 research outputs found

    Regional Variation in the Density of Essential Genes in Mice

    Get PDF
    In most species, and particularly in vertebrates, the percentage of genes absolutely required for survival, the essential genes, has not been estimated. To obtain this estimation, we used the mouse as an experimental model to carry out high-efficiency N-ethyl-N-nitrosourea (ENU) mutagenesis screens in two balancer chromosome regions, and compared our results to a third previously published screen. The number of essential genes in each region was predicted based on allele frequencies. We determined that the density of essential genes differs by up to an order of magnitude among genomic regions. This indicates that extrapolating from regional estimates to genome-wide estimates of essential genes has a huge variance. A particularly high density of essential genes on mouse Chromosome 11 coincides with a high degree of regional linkage conservation, providing a possible causal explanation for the density variation. This is the first demonstration of regional variation in essential gene density in the mouse genome

    Professional decision making and women offenders : containing the chaos?

    Get PDF
    This article draws on the findings from research undertaken in south-east Scotland in 2008 which sought to identify the characteristics of female offenders and to document the views of policy makers and practitioners regarding the experiences of women involved in the Scottish criminal justice system. Despite Scotland having retained a stronger 'welfare' focus than elsewhere in the UK (e.g. McAra, 2008), this is not reflected in the treatment of women who offend, with the rate of female imprisonment having almost doubled in the last ten years and community based disposals falling short of a welfare-oriented system. This article explores why the treatment that women offenders receive in the criminal justice system may be harsh and disproportionate both in relation to their offending and in relation to the treatment of men. It is argued that interventions with women need to be initiated earlier in their cycle of offending and at an earlier stage in the criminal justice process but also that the wide-ranging health, welfare, financial and behavioural needs of women who offend cannot be met solely within an increasingly risk-averse and punitive criminal justice environment

    A mouse chromosome 4 balancer ENU-mutagenesis screen isolates eleven lethal lines.

    Get PDF
    BACKGROUND: ENU-mutagenesis is a powerful technique to identify genes regulating mammalian development. To functionally annotate the distal region of mouse chromosome 4, we performed an ENU-mutagenesis screen using a balancer chromosome targeted to this region of the genome. RESULTS: We isolated 11 lethal lines that map to the region of chromosome 4 between D4Mit117 and D4Mit281. These lines form 10 complementation groups. The majority of lines die during embryonic development between E5.5 and E12.5 and display defects in gastrulation, cardiac development, and craniofacial development. One line displayed postnatal lethality and neurological defects, including ataxia and seizures. CONCLUSION: These eleven mutants allow us to query gene function within the distal region of mouse chromosome 4 and demonstrate that new mouse models of mammalian developmental defects can easily and quickly be generated and mapped with the use of ENU-mutagenesis in combination with balancer chromosomes. The low number of mutations isolated in this screen compared with other balancer chromosome screens indicates that the functions of genes in different regions of the genome vary widely

    Discovery of candidate disease genes in ENU-induced mouse mutants by large-scale sequencing, including a splice-site mutation in nucleoredoxin.

    Get PDF
    An accurate and precisely annotated genome assembly is a fundamental requirement for functional genomic analysis. Here, the complete DNA sequence and gene annotation of mouse Chromosome 11 was used to test the efficacy of large-scale sequencing for mutation identification. We re-sequenced the 14,000 annotated exons and boundaries from over 900 genes in 41 recessive mutant mouse lines that were isolated in an N-ethyl-N-nitrosourea (ENU) mutation screen targeted to mouse Chromosome 11. Fifty-nine sequence variants were identified in 55 genes from 31 mutant lines. 39% of the lesions lie in coding sequences and create primarily missense mutations. The other 61% lie in noncoding regions, many of them in highly conserved sequences. A lesion in the perinatal lethal line l11Jus13 alters a consensus splice site of nucleoredoxin (Nxn), inserting 10 amino acids into the resulting protein. We conclude that point mutations can be accurately and sensitively recovered by large-scale sequencing, and that conserved noncoding regions should be included for disease mutation identification. Only seven of the candidate genes we report have been previously targeted by mutation in mice or rats, showing that despite ongoing efforts to functionally annotate genes in the mammalian genome, an enormous gap remains between phenotype and function. Our data show that the classical positional mapping approach of disease mutation identification can be extended to large target regions using high-throughput sequencing

    Mutation discovery in mice by whole exome sequencing

    Get PDF
    We report the development and optimization of reagents for in-solution, hybridization-based capture of the mouse exome. By validating this approach in a multiple inbred strains and in novel mutant strains, we show that whole exome sequencing is a robust approach for discovery of putative mutations, irrespective of strain background. We found strong candidate mutations for the majority of mutant exomes sequenced, including new models of orofacial clefting, urogenital dysmorphology, kyphosis and autoimmune hepatitis

    Retroviral insertions in the VISION database identify molecular pathways in mouse lymphoid leukemia and lymphoma

    Get PDF
    AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFκB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision
    corecore