54 research outputs found

    Nuclear thermionic converter

    Get PDF
    Efficient nuclear reactor thermionic converter units are described which can be constructed at low cost and assembled in a reactor which requires a minimum of fuel. Each converter unit utilizes an emitter rod with a fluted exterior, several fuel passages located in the bulges that are formed in the rod between the flutes, and a collector receiving passage formed through the center of the rod. An array of rods is closely packed in an interfitting arrangement, with the bulges of the rods received in the recesses formed between the bulges of other rods, thereby closely packing the nuclear fuel. The rods are constructed of a mixture of tungsten and thorium oxide to provide high power output, high efficiency, high strength, and good machinability

    Nuclear radiation problems, unmanned thermionic reactor ion propulsion spacecraft

    Get PDF
    A nuclear thermionic reactor as the electric power source for an electric propulsion spacecraft introduces a nuclear radiation environment that affects the spacecraft configuration, the use and location of electrical insulators and the science experiments. The spacecraft is conceptually configured to minimize the nuclear shield weight by: (1) a large length to diameter spacecraft; (2) eliminating piping penetrations through the shield; and (3) using the mercury propellant as gamma shield. Since the alumina material is damaged by the high nuclear radiation environment in the reactor it is desirable to locate the alumina insulator outside the reflector or develop a more radiation resistant insulator

    Advanced design concepts in nuclear electric propulsion

    Get PDF
    Conceptual designs of the nuclear propulsion programs are reported. Major areas of investigation were (1) design efforts on spacecraft configuration and heat rejection subsystem, (2) high-voltage thermionic reactor concepts, and (3) dual-mode spacecraft configuration study

    Electric fields in solar magnetic structures due to gradient driven instabilities: heating and acceleration of particles

    Get PDF
    The electrostatic instabilities driven by the gradients of the density, temperature and magnetic field, are discussed in their application to solar magnetic structures. Strongly growing modes are found for some typical plasma parameters. These instabilities i) imply the presence of electric fields that can accelerate the plasma particles in both perpendicular and parallel directions with respect to the magnetic field vector, and ii) can stochastically heat ions. The perpendicular acceleration is to the leading order determined by the \bmath{E}\times \bmath{B}-drift acting equally on both ions and electrons, while the parallel acceleration is most effective on electrons. The experimentally confirmed stochastic heating is shown to act mainly in the direction perpendicular to the magnetic field vector and acts stronger on heavier ions. The energy release rate and heating may exceed for several orders of magnitude the value accepted as necessary for a self-sustained heating in the solar corona. The energy source for both the acceleration and the heating is stored in the mentioned background gradients.Comment: To appear in MNRA

    Dimerization of 1-Methylazepine

    Get PDF
    The preparation of alkyl 1-azepinecarboxylates (1) by photolysis or thermolysis of azidoformates in benzene or its derivatives has enabled us to study the monocyclic azepine system[²]

    Dimerisierung des N-Methyl-azepins

    Get PDF
    Mit der Darstellung von N-Alkoxycarbonyl-azepinen (1) durch Photolyse oder Thermolyse von Azido-formiaten in Benzol und seinen Derivaten ermoglichten wir erstmals ein Studium des monocyclischen Azepin-Systems [²]

    Nuclear electric propulsion stage requirements and description

    Get PDF
    The application of a nuclear electric propulsion (NEP) stage in the exploration of near-earth, cometary, and planetary space was discussed. The NEP stage is powered by a liquid-metal-cooled, fast spectrum thermionic reactor capable of providing 120 kWe for 20,000 hours. This power is used to drive a number of mercury ion bombardment thrusters with specific impulse in the range of 4000-5000 seconds. The NEP description, characteristics, and functional requirements are discussed. These requirements are based on a set of five coordinate missions, which are described in detail. These five missions are a representative part of a larger set of missions used as a basic for an advanced propulsion comparison study. Additionally, the NEP stage development plan and test program is outlined and a schedule presented

    Testing of Milliwatt Power Source Components

    Get PDF
    A milliwatt power source (MPS) has been developed to satisfy the requirements of several potential solar system exploration missions. The MPS is a small power source consisting of three major components: a space qualified heat source (RHU), a thermopile (thermoelectric converter or TEC) and a container to direct the RHU heat to the TEC. Thermopiles from Hi-Z Technology, Inc. of San Diego and the Institute of Thermoelectricity of Chernivtsi Ukraine suitable for the MPS were tested and shown to perform as expected, producing 40 mW of power with a temperature difference of about 170°C. Such thermopiles were successfully life tested for up to a year. A MPS container designed and built by Swales Aerospace was tested with both a TEC simulator and actual TEC. The Swales unit, tested under dynamic vacuum, provided less temperature difference than anticipated, such that the TEC produced 20 mW of power with heat input equivalent to a RHU
    corecore