3,406 research outputs found

    Unfolding of eigenvalue surfaces near a diabolic point due to a complex perturbation

    Full text link
    The paper presents a new theory of unfolding of eigenvalue surfaces of real symmetric and Hermitian matrices due to an arbitrary complex perturbation near a diabolic point. General asymptotic formulae describing deformations of a conical surface for different kinds of perturbing matrices are derived. As a physical application, singularities of the surfaces of refractive indices in crystal optics are studied.Comment: 23 pages, 7 figure

    The high-lying 6^6Li levels at excitation energy around 21 MeV

    Get PDF
    The 3^3H+3^3He cluster structure in 6^6Li was investigated by the 3^3H(α\alpha,3^3H 3^3He)n kinematically complete experiment at the incident energy EαE_\alpha = 67.2 MeV. We have observed two resonances at Ex∗E_x^* = 21.30 and 21.90 MeV which are consistent with the 3^3He(3^3H, Îł\gamma)6^6Li analysis in the Ajzenberg-Selove compilation. Our data are compared with the previous experimental data and the RGM and CSRGM calculations.Comment: 12 pages, 6 figures. Accepted for publication in J. Phys. Soc. Jp

    Control of superluminal transit through a heterogeneous medium

    Full text link
    We consider pulse propagation through a two component composite medium (metal inclusions in a dielectric host) with or without cavity mirrors. We show that a very thin slab of such a medium, under conditions of localized plasmon resonance, can lead to significant superluminality with detectable levels of transmitted pulse. A cavity containing the heterogeneous medium is shown to lead to subluminal-to-superluminal transmission depending on the volume fraction of the metal inclusions. The predictions of phase time calculations are verified by explicit calculations of the transmitted pulse shapes. We also demonstrate the independence of the phase time on system width and the volume fraction under specific conditions.Comment: 21 Pages,5 Figures (Published in Journal of Modern Optics

    Strategies for Real-Time Position Control of a Single Atom in Cavity QED

    Get PDF
    Recent realizations of single-atom trapping and tracking in cavity QED open the door for feedback schemes which actively stabilize the motion of a single atom in real time. We present feedback algorithms for cooling the radial component of motion for a single atom trapped by strong coupling to single-photon fields in an optical cavity. Performance of various algorithms is studied through simulations of single-atom trajectories, with full dynamical and measurement noise included. Closed loop feedback algorithms compare favorably to open-loop "switching" analogs, demonstrating the importance of applying actual position information in real time. The high optical information rate in current experiments enables real-time tracking that approaches the standard quantum limit for broadband position measurements, suggesting that realistic active feedback schemes may reach a regime where measurement backaction appreciably alters the motional dynamics.Comment: 12 pages, 10 figures, submitted to J. Opt. B Quant. Semiclass. Op

    Hamiltonian Analysis of Plebanski Theory

    Full text link
    We study the Hamiltonian formulation of Plebanski theory in both the Euclidean and Lorentzian cases. A careful analysis of the constraints shows that the system is non regular, i.e. the rank of the Dirac matrix is non-constant on the non-reduced phase space. We identify the gravitational and topological sectors which are regular sub-spaces of the non-reduced phase space. The theory can be restricted to the regular subspace which contains the gravitational sector. We explicitly identify first and second class constraints in this case. We compute the determinant of the Dirac matrix and the natural measure for the path integral of the Plebanski theory (restricted to the gravitational sector). This measure is the analogue of the Leutwyler-Fradkin-Vilkovisky measure of quantum gravity.Comment: 25 pages, no figures, references adde

    Dark States and Interferences in Cascade Transitions of Ultra-Cold Atoms in a Cavity

    Get PDF
    We examine the competition among one- and two-photon processes in an ultra-cold, three-level atom undergoing cascade transitions as a result of its interaction with a bimodal cavity. We show parameter domains where two-photon transitions are dominant and also study the effect of two-photon emission on the mazer action in the cavity. The two-photon emission leads to the loss of detailed balance and therefore we obtain the photon statistics of the cavity field by the numerical integration of the master equation. The photon distribution in each cavity mode exhibits sub- and super- Poissonian behaviors depending on the strength of atom-field coupling. The photon distribution becomes identical to a Poisson distribution when the atom-field coupling strengths of the modes are equal.Comment: 15 pages including 7 figures in Revtex, submitted to PR

    Operational experience, improvements, and performance of the CDF Run II silicon vertex detector

    Full text link
    The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, and the improvements made along the way to ensure their optimal performance for collecting high quality physics data. In addition, we describe the quantities and methods used to monitor radiation damage in the sensors for optimal performance and summarize the detector performance quantities important to CDF's physics program, including vertex resolution, heavy flavor tagging, and silicon vertex trigger performance.Comment: Preprint accepted for publication in Nuclear Instruments and Methods A (07/31/2013
    • 

    corecore