We consider pulse propagation through a two component composite medium (metal
inclusions in a dielectric host) with or without cavity mirrors. We show that a
very thin slab of such a medium, under conditions of localized plasmon
resonance, can lead to significant superluminality with detectable levels of
transmitted pulse. A cavity containing the heterogeneous medium is shown to
lead to subluminal-to-superluminal transmission depending on the volume
fraction of the metal inclusions. The predictions of phase time calculations
are verified by explicit calculations of the transmitted pulse shapes. We also
demonstrate the independence of the phase time on system width and the volume
fraction under specific conditions.Comment: 21 Pages,5 Figures (Published in Journal of Modern Optics