36 research outputs found
Recommended from our members
Landsat-Derived Estimates of Mangrove Extents in the Sierra Leone Coastal Landscape Complex during 1990–2016
This study provides the first assessment of decadal changes in mangrove extents in Sierra Leone. While significant advances have been made in mangrove mapping using remote sensing, no study has documented long-term changes in mangrove extents in Sierra Leone—one of the most vulnerable countries in West Africa. Such understanding is critical for devising regional management strategies that can support local livelihoods. We utilize multi-date Landsat data and cloud computational techniques to quantify spatiotemporal changes in land cover, with focus on mangrove ecosystems, for 1990–2016 along the coast of Sierra Leone. We specifically focus on four estuaries—Scarcies, Sierra Leone, Yawri Bay, and Sherbro. We relied on the k-means approach for an unsupervised classification, and validated the classified map from 2016 using ground truth data collected from Sentinel-2 and high-resolution images and during field research (accuracy: 95%). Our findings indicate that the Scarcies river estuary witnessed the greatest mangrove loss since 1990 (45%), while the Sierra Leone river estuary experienced mangrove gain over the last 26 years (22%). Overall, the Sierra Leone coast lost 25% of its mangroves between 1990 and 2016, with the lowest coverage in 2000, during the period of civil war (1991–2002). However, natural mangrove dynamics, as supported by field observations, indicate the potential for regeneration and sustainability under carefully constructed management strategies
Mapping cropping intensity of smallholder farms: A comparison of methods using multiple sensors
The food security of smallholder farmers is vulnerable to climate change and climate variability. Cropping intensity, the number of crops planted annually, can be used as a measure of food security for smallholder farmers given that it can greatly affect net production. Current techniques for quantifying cropping intensity may not accurately map smallholder farms where the size of one field is typically smaller than the spatial resolution of readily available satellite data. We evaluated four methods that use multi-scalar datasets and are commonly used in the literature to assess cropping intensity of smallholder farms: 1) the Landsat threshold method, which identifies if a Landsat pixel is cropped or uncropped during each growing season, 2) the MODIS peak method, which determines if there is a phenological peak in the MODIS Enhanced Vegetation Index time series during each growing season, 3) the MODIS temporal mixture analysis, which quantifies the sub-pixel heterogeneity of cropping intensity using phenological MODIS data, and 4) the MODIS hierarchical training method, which quantifies the sub-pixel heterogeneity of cropping intensity using hierarchical training techniques. Each method was assessed using four criteria: 1) data availability, 2) accuracy across different spatial scales (at aggregate scales 250 × 250 m, 1 × 1 km, 5 × 5 km, and 10 × 10 km), 3) ease of implementation, and 4) ability to use the method over large spatial and temporal scales. We applied our methods to two regions in India (Gujarat and southeastern Madhya Pradesh) that represented diversity in crop type, soils, climatology, irrigation access, cropping intensity, and field size. We found that the Landsat threshold method is the most accurate (R2 greater than or equal to 0.71 and RMSE less than or equal to 0.14), particularly at smaller scales of analysis. Yet given the limited availability of Landsat data, we find that the MODIS hierarchical training method meets multiple criteria for mapping cropping intensity over large spatial and temporal scales. Furthermore, the adjusted R2 between predicted and validation data generally increased and the RMSE decreased with spatial aggregation greater than or equal to 5 × 5 km (R2 up to 0.97 and RMSE as low as 0.00). Our model accuracy varied based on the region and season of analysis and was lowest during the summer season in Gujarat when there was high sub-pixel heterogeneity due to sparsely cropped agricultural land-cover. While our results specifically apply to our study regions in India, they most likely also apply to smallholder agriculture in other locations across the globe where the same types of satellite data are readily available
Recommended from our members
Sensitivity of crop cover to climate variability: Insights from two Indian agro-ecoregions
Crop productivity in India varies greatly with inter-annual climate variability and is highly dependent on monsoon rainfall and temperature. The sensitivity of yields to future climate variability varies with crop type, access to irrigation and other biophysical and socio-economic factors. To better understand sensitivities to future climate, this study focuses on agro-ecological subregions in Central and Western India that span a range of crops, irrigation, biophysical conditions and socioeconomic characteristics. Climate variability is derived from remotely-sensed data products, Tropical Rainfall Measuring Mission (TRMM – precipitation) and Moderate Resolution Imaging Spectroradiometer (MODIS – temperature). We examined green-leaf phenologies as proxy for crop productivity using the MODIS Enhanced Vegetation Index (EVI) from 2000 to 2012. Using both monsoon and winter growing seasons, we assessed phenological sensitivity to inter-annual variability in precipitation and temperature patterns. Inter-annual EVI phenology anomalies ranged from −25% to 25%, with some highly anomalous values up to 200%. Monsoon crop phenology in the Central India site is highly sensitive to climate, especially the timing of the start and end of the monsoon and intensity of precipitation. In the Western India site, monsoon crop phenology is less sensitive to precipitation variability, yet shows considerable fluctuations in monsoon crop productivity across the years. Temperature is critically important for winter productivity across a range of crop and management types, such that irrigation might not provide a sufficient buffer against projected temperature increases. Better access to weather information and usage of climate-resilient crop types would play pivotal role in maintaining future productivity. Effective strategies to adapt to projected climate changes in the coming decades would also need to be tailored to regional biophysical and socio-economic conditions
Is voluntary certification of tropical agricultural commodities achieving sustainability goals for small-scale producers? A review of the evidence
Over the last several decades, voluntary certification programs have become a key approach to promote sustainable supply chains for agricultural commodities. These programs provide premiums and other benefits to producers for adhering to environmental and labor practices established by the certifying entities. Following the principles of Cochrane Reviews used in health sciences, we assess evidence to evaluate whether voluntary certification of tropical agricultural commodities (bananas, cocoa, coffee, oil palm, and tea) has achieved environmental benefits and improved economic and social outcomes for small-scale producers at the level of the farm household. We reviewed over 2600 papers in the peer-review literature and identified 24 cases of unique combinations of study area, certification program, and commodity in 16 papers that rigorously analyzed differences between treatment (certified households) and control groups (uncertified households) for a wide range of response variables. Based on analysis of 347 response variables reported in these papers, we conclude that certification is associated on average with positive outcomes for 34% of response variables, no significant difference for 58% of variables, and negative outcomes for 8% of variables. No significant differences were observed for different categories of responses (environmental, economic and social) or for different commodities (banana, coffee and tea), except negative outcomes were significantly less for environmental than other outcome categories (p = 0.01). Most cases (20 out of 24) investigated coffee certification and response variables were inconsistent across cases, indicating the paucity of studies to conduct a conclusive meta-analysis. The somewhat positive results indicate that voluntary certification programs can sometimes play a role in meeting sustainable development goals and do not support the view that such programs are merely greenwashing. However, results also indicate that certification is not a panacea to improve social outcomes or overall incomes of smallholder farmers. Rigorous analysis, standardized criteria, and independent evaluation are needed to assess effectiveness of certification programs in the future
An automated approach to map winter cropped area of smallholder farms across large scales using MODIS imagery
Fine-scale agricultural statistics are an important tool for understanding trends in food production and their associated drivers, yet these data are rarely collected in smallholder systems. These statistics are particularly important for smallholder systems given the large amount of fine-scale heterogeneity in production that occurs in these regions. To overcome the lack of ground data, satellite data are often used to map fine-scale agricultural statistics. However, doing so is challenging for smallholder systems because of (1) complex sub-pixel heterogeneity; (2) little to no available calibration data; and (3) high amounts of cloud cover as most smallholder systems occur in the tropics. We develop an automated method termed the MODIS Scaling Approach (MSA) to map smallholder cropped area across large spatial and temporal scales using MODIS Enhanced Vegetation Index (EVI) satellite data. We use this method to map winter cropped area, a key measure of cropping intensity, across the Indian subcontinent annually from 2000-2001 to 2015-2016. The MSA defines a pixel as cropped based on winter growing season phenology and scales the percent of cropped area within a single MODIS pixel based on observed EVI values at peak phenology. We validated the result with eleven high-resolution scenes (spatial scale of 5 × 5 m2 or finer) that we classified into cropped versus non-cropped maps using training data collected by visual inspection of the high-resolution imagery. The MSA had moderate to high accuracies when validated using these eleven scenes across India (R2 ranging between 0.19 and 0.89 with an overall R2 of 0.71 across all sites). This method requires no calibration data, making it easy to implement across large spatial and temporal scales, with 100% spatial coverage due to the compositing of EVI to generate cloud-free data sets. The accuracies found in this study are similar to those of other studies that map crop production using automated methods and use no calibration data. To aid research on agricultural production at fine spatial scales in India, we make our annual winter crop maps from 2000-2001 to 2015-2016 at 1 × 1 km2 produced in this study publically available through the NASA Socioeconomic Data and Applications Center (SEDAC) hosted by the Center for International Earth Science Information Network (CIESIN) at Columbia University. We also make our R script available since it is likely that this method can be used to map smallholder agriculture in other regions across the globe given that our method performed well in disparate agro-ecologies across India
Recommended from our members
Winter crop sensitivity to inter-annual climate variability in central India
India is predicted to be one of the most vulnerable agricultural regions to future climate changes. Here, we examined the sensitivity of winter cropping systems to inter-annual climate variability in a local market and subsistence-based agricultural system in central India, a data-rich validation site, in order to identify the climate parameters to which winter crops – mainly wheat and pulses in this region – might be sensitive in the future. We used satellite time-series data to quantify inter-annual variability in multiple climate parameters and in winter crop cover, agricultural census data to quantify irrigation, and field observations to identify locations for specific crop types. We developed three mixed-effect models (250 m to 1 km scale) to identify correlations between crop cover (wheat and pulses) and twenty-two climate and environmental parameters for 2001-2013. We find that winter daytime mean temperature (November–January) is the most significant factor affecting winter crops, irrespective of crop type, and is negatively associated with winter crop cover. With pronounced winter warming projected in the coming decades, effective adaptation by smallholder farmers in similar landscapes would require additional strategies, such as access to fine-scale temperature forecasts and heat-tolerant winter crop varieties
Recommended from our members
Winter crop sensitivity to inter-annual climate variability in central India
India is predicted to be one of the most vulnerable agricultural regions to future climate changes. Here, we examined the sensitivity of winter cropping systems to inter-annual climate variability in a local market and subsistence-based agricultural system in central India, a data-rich validation site, in order to identify the climate parameters to which winter crops – mainly wheat and pulses in this region – might be sensitive in the future. We used satellite time-series data to quantify inter-annual variability in multiple climate parameters and in winter crop cover, agricultural census data to quantify irrigation, and field observations to identify locations for specific crop types. We developed three mixed-effect models (250 m to 1 km scale) to identify correlations between crop cover (wheat and pulses) and twenty-two climate and environmental parameters for 2001-2013. We find that winter daytime mean temperature (November–January) is the most significant factor affecting winter crops, irrespective of crop type, and is negatively associated with winter crop cover. With pronounced winter warming projected in the coming decades, effective adaptation by smallholder farmers in similar landscapes would require additional strategies, such as access to fine-scale temperature forecasts and heat-tolerant winter crop varieties
Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa
Creating a national baseline for natural resources, such as mangrove forests, and monitoring them regularly often requires a consistent and robust methodology. With freely available satellite data archives and cloud computing resources, it is now more accessible to conduct such large-scale monitoring and assessment. Yet, few studies examine the reproducibility of such mangrove monitoring frameworks, especially in terms of generating consistent spatial extent. Our objective was to evaluate a combination of image processing approaches to classify mangrove forests along the coast of Senegal and The Gambia. We used freely available global satellite data (Sentinel-2), and cloud computing platform (Google Earth Engine) to run two machine learning algorithms, random forest (RF), and classification and regression trees (CART). We calibrated and validated the algorithms using 800 reference points collected using high-resolution images. We further re-ran 10 iterations for each algorithm, utilizing unique subsets of the initial training data. While all iterations resulted in thematic mangrove maps with over 90% accuracy, the mangrove extent ranges between 827–2807 km2 for Senegal and 245–1271 km2 for The Gambia with one outlier for each country. We further report “Places of Agreement� (PoA) to identify areas where all iterations for both methods agree (506.6 km2 and 129.6 km2 for Senegal and The Gambia, respectively), thus have a high confidence in predicting mangrove extent. While we acknowledge the time- and cost-effectiveness of such methods for the landscape managers, we recommend utilizing them with utmost caution, as well as post-classification on-the-ground checks, especially for decision making
Recommended from our members
Land cover and forest health indicator datasets for central India using very-high resolution satellite data
Satellite imagery has been used to provide global and regional estimates of forest cover. Despite increased availability and accessibility of satellite data, approaches for detecting forest degradation have been limited. We produce a very-high resolution 3-meter (m) land cover dataset and develop a normalized index, the Bare Ground Index (BGI), to detect and map exposed bare ground within forests at 90 m resolution in central India. Tree cover and bare ground was identified from Planet Labs Very High-Resolution satellite data using a Random Forest classifier, resulting in a thematic land cover map with 83.00% overall accuracy (95% confidence interval: 61.25%–90.29%). The BGI is a ratio of bare ground to tree cover and was derived by aggregating the land cover. Results from field data indicate that the BGI serves as a proxy for intensity of forest use although open areas occur naturally. The BGI is an indicator of forest health and a baseline to monitor future changes to a tropical dry forest landscape at an unprecedented spatial scale
Large-Scale High-Resolution Coastal Mangrove Forests Mapping Across West Africa With Machine Learning Ensemble and Satellite Big Data
Coastal mangrove forests provide important ecosystem goods and services, including carbon sequestration, biodiversity conservation, and hazard mitigation. However, they are being destroyed at an alarming rate by human activities. To characterize mangrove forest changes, evaluate their impacts, and support relevant protection and restoration decision making, accurate and up-to-date mangrove extent mapping at large spatial scales is essential. Available large-scale mangrove extent data products use a single machine learning method commonly with 30 m Landsat imagery, and significant inconsistencies remain among these data products. With huge amounts of satellite data involved and the heterogeneity of land surface characteristics across large geographic areas, finding the most suitable method for large-scale high-resolution mangrove mapping is a challenge. The objective of this study is to evaluate the performance of a machine learning ensemble for mangrove forest mapping at 20 m spatial resolution across West Africa using Sentinel-2 (optical) and Sentinel-1 (radar) imagery. The machine learning ensemble integrates three commonly used machine learning methods in land cover and land use mapping, including Random Forest (RF), Gradient Boosting Machine (GBM), and Neural Network (NN). The cloud-based big geospatial data processing platform Google Earth Engine (GEE) was used for pre-processing Sentinel-2 and Sentinel-1 data. Extensive validation has demonstrated that the machine learning ensemble can generate mangrove extent maps at high accuracies for all study regions in West Africa (92%–99% Producer’s Accuracy, 98%–100% User’s Accuracy, 95%–99% Overall Accuracy). This is the first-time that mangrove extent has been mapped at a 20 m spatial resolution across West Africa. The machine learning ensemble has the potential to be applied to other regions of the world and is therefore capable of producing high-resolution mangrove extent maps at global scales periodically.</p