311 research outputs found
Wormholes in spacetimes with cosmological horizons
A generalisation of the asymptotic wormhole boundary condition for the case
of spacetimes with a cosmological horizon is proposed. In particular, we
consider de Sitter spacetime with small cosmological constant. The wave
functions selected by this proposal are exponentially damped in WKB
approximation when the scale factor is large but still much smaller than the
horizon size. In addition, they only include outgoing gravitational modes in
the region beyond the horizon. We argue that these wave functions represent
quantum wormholes and compute the local effective interactions induced by them
in low-energy field theory. These effective interactions differ from those for
flat spacetime in terms that explicitly depend on the cosmological constant.Comment: 10 pages, LaTeX 2.O9, no figure
Social media and related technology:drivers of change in managing the contemporary sales force
The selling environment has undergone tremendous transformation over the past 2 decades. Perhaps the greatest change has centered on changes and advancements in technology. The latest dramatic change has been the rapidly increasing use of social media and other related technologies in the business-to-business realm. The sales world began the use of technology through the use of Web 1.0, which was primarily webpage oriented; now we see the world of social media as the paradigm of how firms should implement technology. Although there has been some recent emphasis on how marketing might implement social media into their strategies and how the individual salesperson might implement social media into his or her daily selling routine, no substantive discussion on how social media is affecting the role of the sales manager has appeared in the literature. This article systematically examines how social media is impacting the sales management function and, in fact, may be dramatically revolutionizing the position. To help the marketing and sales organization better understand the changing sales world, we present eight lessons that every sales manager needs to embrace
Colliding Black Holes: The Close Limit
The problem of the mutual attraction and joining of two black holes is of
importance as both a source of gravitational waves and as a testbed of
numerical relativity. If the holes start out close enough that they are
initially surrounded by a common horizon, the problem can be viewed as a
perturbation of a single black hole. We take initial data due to Misner for
close black holes, apply perturbation theory and evolve the data with the
Zerilli equation. The computed gravitational radiation agrees with and extends
the results of full numerical computations.Comment: 4 pages, Revtex, 3 postscript figures included, CGPG-94/2-
Effective geometry in Astrophysics
The effective metric is introduced by means of two examples (non-linear
electromagnetism and hydrodynamics),along with applications in Astrophysics. A
sketch of the generality of the effect is also given.Comment: 9 pages, contributions for the proceedings of the First International
Workshop on Astronomy and Relativistic Astrophysics (IWARA 2003), Olinda
(Brazil
Absorption of mass and angular momentum by a black hole: Time-domain formalisms for gravitational perturbations, and the small-hole/slow-motion approximation
The first objective of this work is to obtain practical prescriptions to
calculate the absorption of mass and angular momentum by a black hole when
external processes produce gravitational radiation. These prescriptions are
formulated in the time domain within the framework of black-hole perturbation
theory. Two such prescriptions are presented. The first is based on the
Teukolsky equation and it applies to general (rotating) black holes. The second
is based on the Regge-Wheeler and Zerilli equations and it applies to
nonrotating black holes. The second objective of this work is to apply the
time-domain absorption formalisms to situations in which the black hole is
either small or slowly moving. In the context of this small-hole/slow-motion
approximation, the equations of black-hole perturbation theory can be solved
analytically, and explicit expressions can be obtained for the absorption of
mass and angular momentum. The changes in the black-hole parameters can then be
understood in terms of an interaction between the tidal gravitational fields
supplied by the external universe and the hole's tidally-induced mass and
current quadrupole moments. For a nonrotating black hole the quadrupole moments
are proportional to the rate of change of the tidal fields on the hole's world
line. For a rotating black hole they are proportional to the tidal fields
themselves.Comment: 36 pages, revtex4, no figures, final published versio
Head-on collision of unequal mass black holes: close-limit predictions
The close-limit method has given approximations in excellent agreement with
those of numerical relativity for collisions of equal mass black holes. We
consider here colliding holes with unequal mass, for which numerical relativity
results are not available. We try to ask two questions: (i) Can we get
approximate answers to astrophysical questions (ideal mass ratio for energy
production, maximum recoil velocity, etc.), and (ii) can we better understand
the limitations of approximation methods. There is some success in answering
the first type of question, but more with the second, especially in connection
with the issue of measures of the intrinsic mass of the colliding holes, and of
the range of validity of the method.Comment: 19 pages, RevTeX + 9 postscript figure
Numerical Evidence that the Singularity in Polarized U(1) Symmetric Cosmologies on is Velocity Dominated
Numerical evidence supports the conjecture that polarized U(1) symmetric
cosmologies have asymptotically velocity term dominated singularities.Comment: 8 pages, RevTex, 4 figures, uses eps
Remarks on evolution of space-times in 3+1 and 4+1 dimensions
A large class of vacuum space-times is constructed in dimension 4+1 from
hyperboloidal initial data sets which are not small perturbations of empty
space data. These space-times are future geodesically complete, smooth up to
their future null infinity, and extend as vacuum space-times through their
Cauchy horizon. Dimensional reduction gives non-vacuum space-times with the
same properties in 3+1 dimensions.Comment: 10pp, exposition improved; final versio
Numerical Investigation of Cosmological Singularities
Although cosmological solutions to Einstein's equations are known to be
generically singular, little is known about the nature of singularities in
typical spacetimes. It is shown here how the operator splitting used in a
particular symplectic numerical integration scheme fits naturally into the
Einstein equations for a large class of cosmological models and thus allows
study of their approach to the singularity. The numerical method also naturally
singles out the asymptotically velocity term dominated (AVTD) behavior known to
be characteristic of some of these models, conjectured to describe others, and
probably characteristic of a subclass of the rest. The method is first applied
to the unpolarized Gowdy T cosmology. Exact pseudo-unpolarized solutions
are used as a code test and demonstrate that a 4th order accurate
implementation of the numerical method yields acceptable agreement. For generic
initial data, support for the conjecture that the singularity is AVTD with
geodesic velocity (in the harmonic map target space) < 1 is found. A new
phenomenon of the development of small scale spatial structure is also
observed. Finally, it is shown that the numerical method straightforwardly
generalizes to an arbitrary cosmological spacetime on with one
spacelike U(1) symmetry.Comment: 37 pp +14 figures (not included, available on request), plain Te
Head--on Collision of Two Unequal Mass Black Holes
We present results from the first fully nonlinear numerical calculations of
the head--on collision of two unequal mass black holes. Selected waveforms of
the most dominant l=2, 3 and 4 quasinormal modes are shown, as are the total
radiated energies and recoil velocities for a range of mass ratios and initial
separations. Our results validate the close and distant separation limit
perturbation studies, and suggest that the head--on collision scenario is not
likely to produce an astrophysically significant recoil effect.Comment: 5 pages, 3 figure
- …