Absorption of mass and angular momentum by a black hole: Time-domain
formalisms for gravitational perturbations, and the small-hole/slow-motion
approximation
The first objective of this work is to obtain practical prescriptions to
calculate the absorption of mass and angular momentum by a black hole when
external processes produce gravitational radiation. These prescriptions are
formulated in the time domain within the framework of black-hole perturbation
theory. Two such prescriptions are presented. The first is based on the
Teukolsky equation and it applies to general (rotating) black holes. The second
is based on the Regge-Wheeler and Zerilli equations and it applies to
nonrotating black holes. The second objective of this work is to apply the
time-domain absorption formalisms to situations in which the black hole is
either small or slowly moving. In the context of this small-hole/slow-motion
approximation, the equations of black-hole perturbation theory can be solved
analytically, and explicit expressions can be obtained for the absorption of
mass and angular momentum. The changes in the black-hole parameters can then be
understood in terms of an interaction between the tidal gravitational fields
supplied by the external universe and the hole's tidally-induced mass and
current quadrupole moments. For a nonrotating black hole the quadrupole moments
are proportional to the rate of change of the tidal fields on the hole's world
line. For a rotating black hole they are proportional to the tidal fields
themselves.Comment: 36 pages, revtex4, no figures, final published versio