1,568 research outputs found

    Dust distribution in protoplanetary disks - Vertical settling and radial migration

    Get PDF
    We present the results of a three dimensional, locally isothermal, non-self-gravitating SPH code which models protoplanetary disks with two fluids: gas and dust. We ran simulations of a 1 Msun star surrounded by a 0.01 Msun disk comprising 99% gas and 1% dust in mass and extending from 0.5 to ~300 AU. The grain size ranges from 0.001 mm to 10 m for the low resolution (~25 000 SPH particles) simulations and from 0.1 mm to 10 cm for the high resolution (~160 000 SPH particles) simulations. Dust grains are slowed down by the sub-Keplerian gas and lose angular momentum, forcing them to migrate towards the central star and settle to the midplane. The gas drag efficiency varies according to the grain size, with the larger bodies being weakly influenced and following marginally perturbed Keplerian orbits, while smaller grains are strongly coupled to the gas. For intermediate sized grains, the drag force decouples the dust and gas, allowing the dust to preferentially migrate radially and efficiently settle to the midplane. The resulting dust distributions for each grain size will indicate, when grain growth is added, the regions when planets are likely to form.Comment: Accepted for publication in Astronomy & Astrophysics. 11 pages, 6 figure

    New parton distributions from large-x and low-Q^2 data

    Full text link
    We report results of a new global next-to-leading order fit of parton distribution functions in which cuts on W and Q are relaxed, thereby including more data at high values of x. Effects of target mass corrections (TMCs), higher twist contributions, and nuclear corrections for deuterium data are significant in the large-x region. The leading twist parton distributions are found to be stable to TMC model variations as long as higher twist contributions are also included. The behavior of the d quark as x-->1 is particularly sensitive to the deuterium corrections, and using realistic nuclear smearing models the d-quark distribution at large x is found to be softer than in previous fits performed with more restrictive cuts.Comment: 31 pages, 8 figures. Minor corrections. References added. To appear in Phys.Rev.

    Gravitational Radiation from Nonaxisymmetric Instability in a Rotating Star

    Get PDF
    We present the first calculations of the gravitational radiation produced by nonaxisymmetric dynamical instability in a rapidly rotating compact star. The star deforms into a bar shape, shedding 4%\sim 4\% of its mass and 17%\sim 17\% of its angular momentum. The gravitational radiation is calculated in the quadrupole approximation. For a mass M1.4M \sim 1.4 M_{\odot} and radius R10R \sim 10 km, the gravitational waves have frequency 4\sim 4 kHz and amplitude h2×1022h \sim 2 \times 10^{-22} at the distance of the Virgo Cluster. They carry off energy ΔE/M0.1%\Delta E/M \sim 0.1\% and radiate angular momentum ΔJ/J0.7%\Delta J/J \sim 0.7\%.Comment: 16 pages, LaTeX with REVTEX macros, reprints available - send mailing address to [email protected]. Published: PRL 72, 1314 (1994

    The construction of non-spherical models of quasi-relaxed stellar systems

    Full text link
    Spherical models of collisionless but quasi-relaxed stellar systems have long been studied as a natural framework for the description of globular clusters. Here we consider the construction of self-consistent models under the same physical conditions, but including explicitly the ingredients that lead to departures from spherical symmetry. In particular, we focus on the effects of the tidal field associated with the hosting galaxy. We then take a stellar system on a circular orbit inside a galaxy represented as a "frozen" external field. The equilibrium distribution function is obtained from the one describing the spherical case by replacing the energy integral with the relevant Jacobi integral in the presence of the external tidal field. Then the construction of the model requires the investigation of a singular perturbation problem for an elliptic partial differential equation with a free boundary, for which we provide a method of solution to any desired order, with explicit solutions to two orders. We outline the relevant parameter space, thus opening the way to a systematic study of the properties of a two-parameter family of physically justified non-spherical models of quasi-relaxed stellar systems. The general method developed here can also be used to construct models for which the non-spherical shape is due to internal rotation. Eventually, the models will be a useful tool to investigate whether the shapes of globular clusters are primarily determined by internal rotation, by external tides, or by pressure anisotropy.Comment: AASTeX v5.2, 37 pages with 2 figures, accepted for publication in The Astrophysical Journa

    Perturbative Analysis of Adaptive Smoothing Methods in Quantifying Large-Scale Structure

    Get PDF
    Smoothing operation to make continuous density field from observed point-like distribution of galaxies is crucially important for topological or morphological analysis of the large-scale structure, such as, the genus statistics or the area statistics (equivalently the level crossing statistics). It has been pointed out that the adaptive smoothing filters are more efficient tools to resolve cosmic structures than the traditional spatially fixed filters. We study weakly nonlinear effects caused by two representative adaptive methods often used in smoothed hydrodynamical particle (SPH) simulations. Using framework of second-order perturbation theory, we calculate the generalized skewness parameters for the adaptive methods in the case of initially power-law fluctuations. Then we apply the multidimensional Edgeworth expansion method and investigate weakly nonlinear evolution of the genus statistics and the area statistics. Isodensity contour surfaces are often parameterized by the volume fraction of the regions above a given density threshold. We also discuss this parameterization method in perturbative manner.Comment: 42 pages including 9 figure, ApJ 537 in pres

    Gravitational Radiation from Coalescing Binary Neutron Stars

    Full text link
    We calculate the gravitational radiation produced by the merger and coalescence of inspiraling binary neutron stars using 3-dimensional numerical simulations. The stars are modeled as polytropes and start out in the point-mass limit at wide separation. The hydrodynamic integration is performed using smooth particle hydrodynamics (SPH) with Newtonian gravity, and the gravitational radiation is calculated using the quadrupole approximation. We have run several simulations, varying both the neutron star radius and the equation of state. The resulting gravitational wave energy spectra dE/dfdE/df are rich in information about the hydrodynamics of merger and coalescence. In particular, our results demonstrate that detailed information on both GM/Rc2GM/Rc^2 and the equation of state can in principle be extracted from the spectrum.Comment: 33 pages, LaTex with RevTex macros; 21 figures available in compressed PostScript format via anonymous ftp to ftp://zonker.drexel.edu/papers/ns_coll_1 ; in press, Phys. Rev. D (Nov 15, 1994 issue

    Gravitational Radiation from the Coalescence of Binary Neutron Stars: Effects Due to the Equation of State, Spin, and Mass Ratio

    Full text link
    We calculate the gravitational radiation produced by the coalescence of inspiraling binary neutron stars in the Newtonian regime using 3-dimensional numerical simulations. The stars are modeled as polytropes and start out in the point-mass regime at wide separation. The hydrodynamic integration is performed using smooth particle hydrodynamics (SPH) with Newtonian gravity, and the gravitational radiation is calculated using the quadrupole approximation. We have run a number of simulations varying the neutron star radii, equations of state, spins, and mass ratio. The resulting gravitational waveforms and spectra are rich in information about the hydrodynamics of coalescence, and show characteristic dependence on GM/Rc^2, the equation of state, and the mass ratio.Comment: 39 pages, uses Latex 2.09. To be published in the Dec. 15, 1996 issue of Physical Review D. 16 Figures (bitmapped). Originals available in compressed Postscript format at ftp://zonker.drexel.edu/papers/PAPER2

    IMECE2009-12985 REDUCED ORDER MODELING OF ENTRAINED FLOW SOLID FUEL GASIFICATION

    Get PDF
    ABSTRACT Reduced order models that accurately predict the operation of entrained flow gasifiers as components within integrated gasification combined cycle (IGCC) or polygeneration plants are essential for greater commercialization of gasification-based energy systems. A reduced order model, implemented in Aspen Custom Modeler, for entrained flow gasifiers that incorporates mixing and recirculation, rigorously calculated char properties, drying and devolatilization, chemical kinetics, simplified fluid dynamics, heat transfer, slag behavior and syngas cooling is presented. The model structure and submodels are described. Results are presented for the steady-state simulation of a two-metric-tonne-per-day (2 tpd) laboratory-scale Mitsubishi Heavy Industries (MHI) gasifier, fed by two different types of coal. Improvements over the state-of-the-art for reduced order modeling include the ability to incorporate realistic flow conditions and hence predict the gasifier internal and external temperature profiles, the ability to easily interface the model with plant-wide flowsheet models, and the flexibility to apply the same model to a variety of entrained flow gasifier designs. Model validation shows satisfactory agreement with measured values and computational fluid dynamics (CFD) results for syngas temperature profiles, syngas composition, carbon conversion, char flow rate, syngas heating value and cold gas efficiency. Analysis of the results shows the accuracy of the reduced order model to be similar to that of more detailed models that incorporate CFD. Next steps include the activation of pollutant chemistry and slag submodels, application of the reduced order model to other gasifier designs, parameter studies and uncertainty analysis of unknown and/or assumed physical and modeling parameters, and activation of dynamic simulation capability

    Conformally Flat Smoothed Particle Hydrodynamics: Application to Neutron Star Mergers

    Full text link
    We present a new 3D SPH code which solves the general relativistic field + hydrodynamics equations in the conformally flat approximation. Several test cases are considered to test different aspects of the code. We finally apply then the code to the coalescence of a neutron star binary system. The neutron stars are modeled by a polytropic equation of state (EoS) with adiabatic indices Γ=2.0\Gamma=2.0, Γ=2.6\Gamma=2.6 and Γ=3.0\Gamma=3.0. We calculate the gravitational wave signals, luminosities and frequency spectra by employing the quadrupole approximation for emission and back reaction in the slow motion limit. In addition, we consider the amount of ejected mass.Comment: 23 pages, 12 figures. Accepted for publication in Phys. Rev. D. v3: Final Versio
    corecore