8,168 research outputs found
How does gas cool in DM halos?
In order to study the process of cooling in dark-matter (DM) halos and assess
how well simple models can represent it, we run a set of radiative SPH
hydrodynamical simulations of isolated halos, with gas sitting initially in
hydrostatic equilibrium within Navarro-Frenk-White (NFW) potential wells. [...]
After having assessed the numerical stability of the simulations, we compare
the resulting evolution of the cooled mass with the predictions of the
classical cooling model of White & Frenk and of the cooling model proposed in
the MORGANA code of galaxy formation. We find that the classical model predicts
fractions of cooled mass which, after about two central cooling times, are
about one order of magnitude smaller than those found in simulations. Although
this difference decreases with time, after 8 central cooling times, when
simulations are stopped, the difference still amounts to a factor of 2-3. We
ascribe this difference to the lack of validity of the assumption that a mass
shell takes one cooling time, as computed on the initial conditions, to cool to
very low temperature. [...] The MORGANA model [...] better agrees with the
cooled mass fraction found in the simulations, especially at early times, when
the density profile of the cooling gas is shallow. With the addition of the
simple assumption that the increase of the radius of the cooling region is
counteracted by a shrinking at the sound speed, the MORGANA model is also able
to reproduce for all simulations the evolution of the cooled mass fraction to
within 20-50 per cent, thereby providing a substantial improvement with respect
to the classical model. Finally, we provide a very simple fitting function
which accurately reproduces the cooling flow for the first ~10 central cooling
times. [Abridged]Comment: 15 pages, accepted by MNRA
Aortomesenteric fat thickness with ultrasound predicts metabolic diseases in obese patients
BACKGROUND:: The relation between visceral fat accumulation and development of cardiovascular and metabolic disorders has been demonstrated. The aim of this study was to determine the relationship between a new ultrasound visceral fat thickness (VFT) measurement and clinical and anthropometric data in a consecutive series of obese patients. METHODS:: Fifty-five consecutive male obese patients underwent ultrasound evaluation and metabolic and anthropometric parameters determination at baseline and after 3 weeks of a very low-calorie diet (VLCD) therapy. The new ultrasound measurement, the thickness of the fat between the aorta and the superior mesenteric artery (AMFT), was determined along with the maximum thickness of preperitoneal fat and the global VFT. RESULTS:: AMFT showed a better correlation than VFT and preperitoneal fat with all anthropometric and metabolic parameters, both at baseline and after VLCD regimen. At baseline, patients in the middle and high AMFT and VFT tertiles had a significantly higher prevalence of metabolic diseases with respect to AMFT and VFT low tertile patients, whereas after VLCD period, AMFT only showed significant difference within tertiles. The odds ratios for the various metabolic diseases were higher in the middle and high AMFT tertiles than those in the middle and high VFT tertiles, remaining significant after adjustment for age, body mass index and VLCD regimen only in the middle and high AMFT tertiles. CONCLUSIONS:: The ultrasonographic AMFT evaluation is strongly correlated to the presence of metabolic syndrome and could be a valuable tool to predict metabolic diseases and associated cardiovascular risks in men. © 2013 Lippincott Williams and Wilkins
Isotope Spectroscopy
The measurement of isotopic ratios provides a privileged insight both into
nucleosynthesis and into the mechanisms operating in stellar envelopes, such as
gravitational settling. In this article, we give a few examples of how isotopic
ratios can be determined from high-resolution, high-quality stellar spectra. We
consider examples of the lightest elements, H and He, for which the isotopic
shifts are very large and easily measurable, and examples of heavier elements
for which the determination of isotopic ratios is more difficult. The presence
of 6Li in the stellar atmospheres causes a subtle extra depression in the red
wing of the 7Li 670.7 nm doublet which can only be detected in spectra of the
highest quality. But even with the best spectra, the derived Li abundance
can only be as good as the synthetic spectra used for their interpretation. It
is now known that 3D non-LTE modelling of the lithium spectral line profiles is
necessary to account properly for the intrinsic line asymmetry, which is
produced by convective flows in the atmospheres of cool stars, and can mimic
the presence of 6Li. We also discuss briefly the case of the carbon isotopic
ratio in metal-poor stars, and provide a new determination of the nickel
isotopic ratios in the solar atmosphere.Comment: AIP Thinkshop 10 "High resolution optical spectroscopy", invited
talk, AN in pres
Daily variability of Ceres' Albedo detected by means of radial velocities changes of the reflected sunlight
Bright features have been recently discovered by Dawn on Ceres, which extend
previous photometric and Space Telescope observations. These features should
produce distortions of the line profiles of the reflected solar spectrum and
therefore an apparent radial velocity variation modulated by the rotation of
the dwarf planet. Here we report on two sequences of observations of Ceres
performed in the nights of 31 July, 26-27 August 2015 by means of the
high-precision HARPS spectrograph at the 3.6-m La Silla ESO telescope. The
observations revealed a quite complex behaviour which likely combines a radial
velocity modulation due to the rotation with an amplitude of approx +/- 6 m/s
and an unexpected diurnal effect. The latter changes imply changes in the
albedo of Occator's bright features due to the blaze produced by the exposure
to solar radiation. The short-term variability of Ceres' albedo is on
timescales ranging from hours to months and can both be confirmed and followed
by means of dedicated radial velocity observations.Comment: 5 pag, 1fig, two tables, MNRAS Letters 201
Clues on the Galactic evolution of sulphur from star clusters
(Abridged) The abundances of alpha-elements are a powerful diagnostic of the
star formation history and chemical evolution of a galaxy. Sulphur, being
moderately volatile, can be reliably measured in the interstellar medium (ISM)
of damped Ly-alpha galaxies and extragalactic HII regions. Measurements in
stars of different metallicity in our Galaxy can then be readily compared to
the abundances in external galaxies. Such a comparison is not possible for Si
or Ca that suffer depletion onto dust in the ISM. Furthermore, studying sulphur
is interesting because it probes nucleosynthetic conditions that are very
different from those of O or Mg. The measurements in star clusters are a
reliable tracers of the Galactic evolution of sulphur. We find
NLTE=6.11+/-0.04 for M 4, NLTE=7.17+/-0.02 for NGC 2477, and
NLTE=7.13+/-0.06 for NGC 5822. For the only star studied in Trumpler 5 we
find A(S)NLTE=6.43+/-0.03 and A(S)LTE=6.94+/-0.05. Our measurements show that,
by and large, the S abundances in Galactic clusters trace reliably those in
field stars. The only possible exception is Trumpler 5, for which the NLTE
sulphur abundance implies an [S/Fe] ratio lower by roughly 0.4 dex than
observed in field stars of comparable metallicity, even though its LTE sulphur
abundance is in line with abundances of field stars. Moreover the LTE sulphur
abundance is consistent only with the abundance of another alpha-element, Mg,
in the same star, while the low NLTE value is consistent with Si and Ca. The S
abundances in our sample of stars in clusters imply that the clusters are
chemically homogeneous for S within 0.05 dex.Comment: A&A in pres
Temperature dependence of iron local magnetic moment in phase-separated superconducting chalcogenide
We have studied local magnetic moment and electronic phase separation in
superconducting KFeSe by x-ray emission and absorption
spectroscopy. Detailed temperature dependent measurements at the Fe K-edge have
revealed coexisting electronic phases and their correlation with the transport
properties. By cooling down, the local magnetic moment of Fe shows a sharp drop
across the superconducting transition temperature (T) and the coexisting
phases exchange spectral weights with the low spin state gaining intensity at
the expense of the higher spin state. After annealing the sample across the
iron-vacancy order temperature, the system does not recover the initial state
and the spectral weight anomaly at T as well as superconductivity
disappear. The results clearly underline that the coexistence of the low spin
and high spin phases and the transitions between them provide unusual magnetic
fluctuations and have a fundamental role in the superconducting mechanism of
electronically inhomogeneous KFeSe system.Comment: 6 pages, 5 figure
Hida Scan in The Follow-Up of Biliary-Enteric Anastomoses
In order to assess the patency and function of biliary-enteric anastomoses performed in our Department of
Surgery, 21 patients entered the following study, provided an informed consent was obtained. All the
patients were affected by benign biliary tract diseases and underwent either Roux-en-Y
hepaticojejunostomy (11 cases), or side-to-side choledochoduodenostomy (10 cases). The 21 patients
were evaluated with Tc-99m-HIDA scanning at intervals of 20 days–36 months after the surgical
procedure (mean 14 months). The images were obtained after intravenous injection of the radioactive
medium (5 mCi) and the scans were taken at 1 min (1 frame/s), 3 min (1 frame/10 s), and 56 min (1 frame/2
min). The data were analyzed by a Digital PDP 11/34 Computer System. This method allowed us to assess
each individual patient for the patency of the anastomosis and, by computer analysis, to build up a profile
of the timing of the passage of the radioactive medium through the anastomosis; a delayed passage across
the anastomosis was always pathological
Characterizing Diffused Stellar Light in simulated galaxy clusters
[Abridged] In this paper, we carry out a detailed analysis of the performance
of two different methods to identify the diffuse stellar light in cosmological
hydrodynamical simulations of galaxy clusters. One method is based on a
dynamical analysis of the stellar component. The second method is closer to
techniques commonly employed in observational studies. Both the dynamical
method and the method based on the surface brightness limit criterion are
applied to the same set of hydrodynamical simulations for a large sample about
80 galaxy clusters.
We find significant differences between the ICL and DSC fractions computed
with the two corresponding methods, which amounts to about a factor of two for
the AGN simulations, and a factor of four for the CSF set. We also find that
the inclusion of AGN feedback boosts the DSC and ICL fractions by a factor of
1.5-2, respectively, while leaving the BCG+ICL and BCG+DSC mass fraction almost
unchanged. The sum of the BCG and DSC mass stellar mass fraction is found to
decrease from ~80 per cent in galaxy groups to ~60 per cent in rich clusters,
thus in excess of what found from observational analysis.
We identify the average surface brightness limits that yields the ICL
fraction from the SBL method close to the DSC fraction from the dynamical
method. These surface brightness limits turn out to be brighter in the CSF than
in the AGN simulations. This is consistent with the finding that AGN feedback
makes BCGs to be less massive and with shallower density profiles than in the
CSF simulations. The BCG stellar component, as identified by both methods, are
slightly older and more metal-rich than the stars in the diffuse component.Comment: 18 Pages, 15 figures. Matches to MNRAS published versio
- …