9,177 research outputs found

    Chemical composition of the stellar cluster Gaia1: No surprise behind Sirius

    Get PDF
    Indexación: Web of Science; Scopus.We observed six He-clump stars of the intermediate-Age stellar cluster Gaia1 with the MIKE/Magellan spectrograph. A possible extra-galactic origin of this cluster, recently discovered thanks to the first data release of the ESA Gaia mission, has been suggested, based on its orbital parameters. Abundances for Fe, α, proton-And neutron-capture elements have been obtained. We find no evidence of intrinsic abundance spreads. The iron abundance is solar ([FeI/H] = + 0.00 ± 0.01; σ = 0.03 dex). All the other abundance ratios are generally solar-scaled, similar to the Galactic thin disk and open cluster stars of similar metallicity. The chemical composition of Gaia1 does not support an extra-galactic origin for this stellar cluster, which can be considered as a standard Galactic open cluster.https://www.aanda.org/articles/aa/abs/2017/07/aa31009-17/aa31009-17.htm

    Structural characterization of phytotoxic terpenoids from Cestrum parqui.

    Get PDF
    Isolation, chemical characterization and phytotoxicity of nine polyhydroxylated terpenes (five C13 nor-isoprenoids, two sesquiterpenes, a spirostane and a pseudosapogenin) from Cestrum parqui LHerr are reported. In this work we completed the phytochemical investigation of the terpenic fraction of the plant and described the structural elucidation of polar isoprenoids using NMR methods. All the configurations of the compounds have been assigned by NOESY experiments. Four new structures have been identified as (3S,5R,6R,7E,9R)-5,6,9-trihydroxy-3-isopropyloxy-7-megastigmene, 5a-spirostan-3b,12b,15a-triol, and 26-O-(30-isopentanoyl)-b-Dglucopyranosyl- 5a-furost-20(22)-ene-3b,26-diol, and as an unusual tricyclic sesquiterpene. The compounds have been assayed for their phytotoxicity on lettuce at the concentrations ranging between 104 and 107 M. The activities of some compounds were similar to that of the herbicide pendimethalin

    Long-term radial-velocity variations of the Sun as a star: The HARPS view

    Get PDF
    Stellar radial velocities play a fundamental role in the discovery of extrasolar planets and the measurement of their physical parameters as well as in the study of stellar physical properties. We investigate the impact of the solar activity on the radial velocity of the Sun using the HARPS spectrograph to obtain measurements that can be directly compared with those acquired in the extrasolar planet search programs. We use the Moon, the Galilean satellites, and several asteroids as reflectors to measure the radial velocity of the Sun as a star and correlate it with disc-integrated chromospheric and magnetic indexes of solar activity that are similar to stellar activity indexes. We discuss in detail the systematic effects that affect our measurements and the methods to account for them. We find that the radial velocity of the Sun as a star is positively correlated with the level of its chromospheric activity at about 95 percent significance level. The amplitude of the long-term variation measured in the 2006-2014 period is 4.98 \pm 1.44 m/s, in good agreement with model predictions. The standard deviation of the residuals obtained by subtracting a linear best fit is 2.82 m/s and is due to the rotation of the reflecting bodies and the intrinsic variability of the Sun on timescales shorter than the activity cycle. A correlation with a lower significance is detected between the radial velocity and the mean absolute value of the line-of-sight photospheric magnetic field flux density. Our results confirm similar correlations found in other late-type main-sequence stars and provide support to the predictions of radial velocity variations induced by stellar activity based on current models.Comment: 11 pages, 7 figures, 2 tables, 1 Appendix; accepted by Astronomy and Astrophysic

    The cosmological Lithium problem outside the Galaxy: the Sagittarius globular cluster M54

    Full text link
    The cosmological Li problem is the observed discrepancy between Li abundance, A(Li), measured in Galactic dwarf, old and metal-poor stars (traditionally assumed to be equal to the initial value A(Li)_0), and that predicted by standard Big Bang Nucleosynthesis calculations (A(Li)_{BBN}). Here we attack the Li problem by considering an alternative diagnostic, namely the surface Li abundance of red giant branch stars that in a colour magnitude diagram populate the region between the completion of the first dredge-up and the red giant branch bump. We obtained high-resolution spectra with the FLAMES facility at the Very Large Telescope for a sample of red giants in the globular cluster M54, belonging to the Sagittarius dwarf galaxy. We obtain A(Li)=+0.93+-0.11 dex, translating -- after taking into account the dilution due to the dredge up-- to initial abundances (A(Li)_0) in the range 2.35--2.29 dex, depending on whether or not atomic diffusion is considered. This is the first measurement of Li in the Sagittarius galaxy and the more distant estimate of A(Li)_0 in old stars obtained so far. The A(Li)_0 estimated in M54 is lower by ~0.35 dex than A(Li)_{BBN}, hence incompatible at a level of ~3sigma. Our result shows that this discrepancy is a universal problem concerning both the Milky Way and extra-galactic systems. Either modifications of BBN calculations, or a combination of atomic diffusion plus a suitably tuned additional mixing during the main sequence, need to be invoked to solve the discrepancy.Comment: Accepted by MNRAS, 10 pages, 5 figures, 1 tabl

    On the Average Comoving Number Density of Halos

    Full text link
    I compare the numerical multiplicity function given in Yahagi, Nagashima & Yoshii (2004) with the theoretical multiplicity function obtained by means of the excursion set model and an improved version of the barrier shape obtained in Del Popolo & Gambera (1998), which implicitly takes account of total angular momentum acquired by the proto-structure during evolution and of a non-zero cosmological constant. I show that the multiplicity function obtained in the present paper, is in better agreement with Yahagi, Nagashima & Yoshii (2004) simulations than other previous models (Sheth & Tormen 1999; Sheth, Mo & Tormen 2001; Sheth & Tormen 2002; Jenkins et al. 2001) and that differently from some previous multiplicity function models (Jenkins et al. 2001; Yahagi, Nagashima & Yoshii 2004) it was obtained from a sound theoretical background

    UVES radial velocity accuracy from asteroid observations. Implications for the fine structure constant variability

    Full text link
    High resolution observations of the asteroids Iris and Juno have been performed by means of the UVES spectrograph at the ESO VLT to obtain the effective accurac y of the spectrograph's radial velocity. The knowledge of this quantity has impo rtant bearings on studies searching for a variability of the fine structure cons tant carried on with this instrument. Asteroids provide a precise radial velocit y reference at the level of 1 m/s which allows instrumental calibration and the recognition of small instrumental drifts and calibration systematics. In particu lar, radial velocity drifts due to non uniform slit illumination and slit optica l misalignment in the two UVES spectrograph arms can be investigated. The positi on of the solar spectrum reflected by the asteroids are compared with the solar wavelength positions or with that of asteroid observations at other epochs or wi th the twilight to asses UVES instrumental accuracy . Radial velocities offsets in the range 10--50 m/s are generally observed likely due to a non uniform slit illumination. However, no radial velocity patterns with wavelength are detected and the two UVES arms provide consistent radial velocities. These results suggest that the detected alpha variability by Levshakov et al. (2007) deduced from a drift of -180 (+/- 85) m/s at z =1.84, between two sets of FeII lines falling in the two UVES arms may be real or induced by other kinds of systematics than those investigated here. The proposed technique allows real time quality check of the spectrograph and should be followed for very accurate measurements.Comment: Accepted A&

    Planar Josephson Tunnel Junctions in a Transverse Magnetic Field

    Get PDF
    Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where demagnetization effects imposed by the junction geometry and configuration of the electrodes are important. Measurements of the critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size and critical current density show that it is advantageous to use a transverse magnetic field rather than an in-plane field to suppress the Josephson tunnel current and Fiske resonances in practical applications.Comment: 5 pages, 2 figures, submitted to Journal of Applied Physic
    • …
    corecore