9,177 research outputs found
Chemical composition of the stellar cluster Gaia1: No surprise behind Sirius
Indexación: Web of Science; Scopus.We observed six He-clump stars of the intermediate-Age stellar cluster Gaia1 with the MIKE/Magellan spectrograph. A possible extra-galactic origin of this cluster, recently discovered thanks to the first data release of the ESA Gaia mission, has been suggested, based on its orbital parameters. Abundances for Fe, α, proton-And neutron-capture elements have been obtained. We find no evidence of intrinsic abundance spreads. The iron abundance is solar ([FeI/H] = + 0.00 ± 0.01; σ = 0.03 dex). All the other abundance ratios are generally solar-scaled, similar to the Galactic thin disk and open cluster stars of similar metallicity. The chemical composition of Gaia1 does not support an extra-galactic origin for this stellar cluster, which can be considered as a standard Galactic open cluster.https://www.aanda.org/articles/aa/abs/2017/07/aa31009-17/aa31009-17.htm
Structural characterization of phytotoxic terpenoids from Cestrum parqui.
Isolation, chemical characterization and phytotoxicity of nine polyhydroxylated terpenes (five C13 nor-isoprenoids, two sesquiterpenes,
a spirostane and a pseudosapogenin) from Cestrum parqui LHerr are reported. In this work we completed the phytochemical
investigation of the terpenic fraction of the plant and described the structural elucidation of polar isoprenoids using NMR methods.
All the configurations of the compounds have been assigned by NOESY experiments. Four new structures have been identified as
(3S,5R,6R,7E,9R)-5,6,9-trihydroxy-3-isopropyloxy-7-megastigmene, 5a-spirostan-3b,12b,15a-triol, and 26-O-(30-isopentanoyl)-b-Dglucopyranosyl-
5a-furost-20(22)-ene-3b,26-diol, and as an unusual tricyclic sesquiterpene.
The compounds have been assayed for their phytotoxicity on lettuce at the concentrations ranging between 104 and 107 M. The
activities of some compounds were similar to that of the herbicide pendimethalin
Long-term radial-velocity variations of the Sun as a star: The HARPS view
Stellar radial velocities play a fundamental role in the discovery of
extrasolar planets and the measurement of their physical parameters as well as
in the study of stellar physical properties. We investigate the impact of the
solar activity on the radial velocity of the Sun using the HARPS spectrograph
to obtain measurements that can be directly compared with those acquired in the
extrasolar planet search programs. We use the Moon, the Galilean satellites,
and several asteroids as reflectors to measure the radial velocity of the Sun
as a star and correlate it with disc-integrated chromospheric and magnetic
indexes of solar activity that are similar to stellar activity indexes. We
discuss in detail the systematic effects that affect our measurements and the
methods to account for them. We find that the radial velocity of the Sun as a
star is positively correlated with the level of its chromospheric activity at
about 95 percent significance level. The amplitude of the long-term variation
measured in the 2006-2014 period is 4.98 \pm 1.44 m/s, in good agreement with
model predictions. The standard deviation of the residuals obtained by
subtracting a linear best fit is 2.82 m/s and is due to the rotation of the
reflecting bodies and the intrinsic variability of the Sun on timescales
shorter than the activity cycle. A correlation with a lower significance is
detected between the radial velocity and the mean absolute value of the
line-of-sight photospheric magnetic field flux density. Our results confirm
similar correlations found in other late-type main-sequence stars and provide
support to the predictions of radial velocity variations induced by stellar
activity based on current models.Comment: 11 pages, 7 figures, 2 tables, 1 Appendix; accepted by Astronomy and
Astrophysic
The cosmological Lithium problem outside the Galaxy: the Sagittarius globular cluster M54
The cosmological Li problem is the observed discrepancy between Li abundance,
A(Li), measured in Galactic dwarf, old and metal-poor stars (traditionally
assumed to be equal to the initial value A(Li)_0), and that predicted by
standard Big Bang Nucleosynthesis calculations (A(Li)_{BBN}). Here we attack
the Li problem by considering an alternative diagnostic, namely the surface Li
abundance of red giant branch stars that in a colour magnitude diagram populate
the region between the completion of the first dredge-up and the red giant
branch bump. We obtained high-resolution spectra with the FLAMES facility at
the Very Large Telescope for a sample of red giants in the globular cluster
M54, belonging to the Sagittarius dwarf galaxy. We obtain A(Li)=+0.93+-0.11
dex, translating -- after taking into account the dilution due to the dredge
up-- to initial abundances (A(Li)_0) in the range 2.35--2.29 dex, depending on
whether or not atomic diffusion is considered. This is the first measurement of
Li in the Sagittarius galaxy and the more distant estimate of A(Li)_0 in old
stars obtained so far. The A(Li)_0 estimated in M54 is lower by ~0.35 dex than
A(Li)_{BBN}, hence incompatible at a level of ~3sigma. Our result shows that
this discrepancy is a universal problem concerning both the Milky Way and
extra-galactic systems. Either modifications of BBN calculations, or a
combination of atomic diffusion plus a suitably tuned additional mixing during
the main sequence, need to be invoked to solve the discrepancy.Comment: Accepted by MNRAS, 10 pages, 5 figures, 1 tabl
On the Average Comoving Number Density of Halos
I compare the numerical multiplicity function given in Yahagi, Nagashima &
Yoshii (2004) with the theoretical multiplicity function obtained by means of
the excursion set model and an improved version of the barrier shape obtained
in Del Popolo & Gambera (1998), which implicitly takes account of total angular
momentum acquired by the proto-structure during evolution and of a non-zero
cosmological constant. I show that the multiplicity function obtained in the
present paper, is in better agreement with Yahagi, Nagashima & Yoshii (2004)
simulations than other previous models (Sheth & Tormen 1999; Sheth, Mo & Tormen
2001; Sheth & Tormen 2002; Jenkins et al. 2001) and that differently from some
previous multiplicity function models (Jenkins et al. 2001; Yahagi, Nagashima &
Yoshii 2004) it was obtained from a sound theoretical background
UVES radial velocity accuracy from asteroid observations. Implications for the fine structure constant variability
High resolution observations of the asteroids Iris and Juno have been
performed by means of the UVES spectrograph at the ESO VLT to obtain the
effective accurac y of the spectrograph's radial velocity. The knowledge of
this quantity has impo rtant bearings on studies searching for a variability of
the fine structure cons tant carried on with this instrument. Asteroids provide
a precise radial velocit y reference at the level of 1 m/s which allows
instrumental calibration and the recognition of small instrumental drifts and
calibration systematics. In particu lar, radial velocity drifts due to non
uniform slit illumination and slit optica l misalignment in the two UVES
spectrograph arms can be investigated. The positi on of the solar spectrum
reflected by the asteroids are compared with the solar wavelength positions or
with that of asteroid observations at other epochs or wi th the twilight to
asses UVES instrumental accuracy . Radial velocities offsets in the range
10--50 m/s are generally observed likely due to a non uniform slit
illumination. However, no radial velocity patterns with wavelength are detected
and the two UVES arms provide consistent radial velocities. These results
suggest that the detected alpha variability by Levshakov et al. (2007) deduced
from a drift of -180 (+/- 85) m/s at z =1.84, between two sets of FeII lines
falling in the two UVES arms may be real or induced by other kinds of
systematics than those investigated here. The proposed technique allows real
time quality check of the spectrograph and should be followed for very accurate
measurements.Comment: Accepted A&
Planar Josephson Tunnel Junctions in a Transverse Magnetic Field
Traditionally, since the discovery of the Josephson effect in 1962, the
magnetic diffraction pattern of planar Josephson tunnel junctions has been
recorded with the field applied in the plane of the junction. Here we discuss
the static junction properties in a transverse magnetic field where
demagnetization effects imposed by the junction geometry and configuration of
the electrodes are important. Measurements of the critical current versus
magnetic field in planar Nb-based high-quality junctions with different
geometry, size and critical current density show that it is advantageous to use
a transverse magnetic field rather than an in-plane field to suppress the
Josephson tunnel current and Fiske resonances in practical applications.Comment: 5 pages, 2 figures, submitted to Journal of Applied Physic
- …