18 research outputs found
Cell-specific regulation of gene expression in mitochondria during anther development in sunflower.
Mitochondrial gene expression was characterized during meiosis in sunflower anthers. In situ hybridization experiments showed that there was a marked accumulation of four mitochondrial gene transcripts (atpA, atp9, cob, and rrn26) in young meiotic cells. This pattern of transcript accumulation was only detected for mitochondrial genes and not for transcripts of two nuclear genes (atpB and ANT) encoding mitochondrial proteins or another nuclear gene transcript (25S rRNA). Immunolocalization studies showed that the pattern of accumulation of the protein product of the atpA gene, the F1-ATP synthase alpha subunit, reflects that of the transcript. The expression of the novel mitochondrial orf522, which is associated with the cytoplasmic male-sterile (CMS) phenotype, was also studied by in situ hybridization. The orf522 transcripts were reduced in abundance in meiotic cells in the presence of fertility restorer genes. These results suggest that mitochondrial gene expression is regulated in a cell-specific fashion in developing anthers and that the restorer gene(s) may act cell specifically
Premature arrest of the male flower meristem precedes sexual dimorphism in the dioecious plant Silene latifolia.
Most dioecious plant species are believed to derive from hermaphrodite ancestors. The regulatory pathways that have been modified during evolution of the hermaphrodite ancestors and led to the emergence of dioecious species still remain unknown. Silene latifolia is a dioecious plant species harboring XY sex chromosomes. To identify the molecular mechanisms involved in female organ suppression in male flowers of S. latifolia, we looked for genes potentially involved in the establishment of floral organ and whorl boundaries. We identified homologs of Arabidopsis thaliana SHOOTMERISTEMLESS (STM) and CUP SHAPED COTYLEDON (CUC) 1 and CUC2 genes in S. latifolia. Our phylogenetic analyses suggest that we identified true orthologs for both types of genes. Detailed expression analyses showed a conserved expression pattern for these genes between S. latifolia and A. thaliana, suggesting a conserved function of the corresponding proteins. Comparative in situ hybridization experiments between male, female, and hermaphrodite individuals reveal that these genes show a male-specific pattern of expression before any morphological difference become apparent. Our results make SlSTM and SlCUC strong candidates for being involved in sex determination in S. latifolia
SlY1, the first active gene cloned from a plant Y chromosome, encodes a WD-repeat protein.
Unlike the majority of flowering plants, which possess hermaphrodite flowers, white campion (Silene latifolia) is dioecious and has flowers of two different sexes. The sex is determined by the combination of heteromorphic sex chromosomes: XX in females and XY in males. The Y chromosome of S.latifolia was microdissected to generate a Y-specific probe which was used to screen a young male flower cDNA library. We identified five genes which represent the first active genes to be cloned from a plant Y chromosome. Here we report a detailed analysis of one of these genes, SlY1 (S.latifolia Y-gene 1). SlY1 is expressed predominantly in male flowers. A closely related gene, SlX1, is predicted to be located on the X chromosome and is strongly expressed in both male and female flowers. SlY1 and SlX1 encode almost identical proteins containing WD repeats. Immunolocalization experiments showed that these proteins are localized in the nucleus, and that they are most abundant in cells that are actively dividing or beginning to differentiate. Interestingly, they do not accumulate in arrested sexual organs and represent potential targets for sex determination genes. These genes will permit investigation of the origin and evolution of sex chromosomes in plants
What’s in a Badge? A Computational Reproducibility Investigation of the Open Data Badge Policy in one Issue of Psychological Science
[Preprint; Manuscript accepted at Psychological Science] In April 2019, Psychological Science published its first issue in which all research articles received the Open Data badge. We used that issue to investigate the effectiveness of this badge, focusing on the adherence to its aim at Psychological Science: sharing both data and code to ensure reproducibility of results. Twelve researchers of varying experience levels attempted to reproduce the results of the empirical articles in the target issue (at least three researchers per article). We found that while all 14 articles provided at least some data and six provided analysis code, only one article was rated to be exactly reproducible, and three essentially reproducible with minor deviations. We suggest that researchers should be encouraged to adhere to the higher standard in force at Psychological Science. Moreover, a check of reproducibility during peer review may be preferable to the ‘disclosure method’ of awarding badges
Investigating the Effectiveness of the Open Data Badge Policy at Psychological Science Through Computational Reproducibility
In April 2019, Psychological Science published its first issue in which all research articles received the Open Data badge. We used that issue to investigate the effectiveness of this badge, focusing on the adherence to its stated aim at Psychological Science: ensuring reproducibility of results. Twelve researchers of varying experience levels attempted to reproduce the results of the empirical articles in the target issue (at least three researchers per article). We found that all articles provided at least some data, 6/14 articles provided analysis code or scripts, only 1/14 articles was rated to be exactly reproducible, and 3/14 essentially reproducible with minor deviations. We recommend that Psychological Science require a check of reproducibility at the peer review stage before awarding badges, and that the Open Data badge be renamed "Open Data and Code" to avoid confusion and encourage researchers to adhere to this higher standard
What's in a Badge? A Computational Reproducibility Investigation of the Open Data Badge Policy in One Issue of Psychological Science.
Peer reviewed: TrueIn April 2019, Psychological Science published its first issue in which all Research Articles received the Open Data badge. We used that issue to investigate the effectiveness of this badge, focusing on the adherence to its aim at Psychological Science: sharing both data and code to ensure reproducibility of results. Twelve researchers of varying experience levels attempted to reproduce the results of the empirical articles in the target issue (at least three researchers per article). We found that all 14 articles provided at least some data and six provided analysis code, but only one article was rated to be exactly reproducible, and three were rated as essentially reproducible with minor deviations. We suggest that researchers should be encouraged to adhere to the higher standard in force at Psychological Science. Moreover, a check of reproducibility during peer review may be preferable to the disclosure method of awarding badges