249 research outputs found

    Effects of essential oils of Satureja bachtiarica and Nigella sativa on the efficacy of lactococcosis vaccine in rainbow trout (Oncorhynchus mykiss)

    Get PDF
    Lactococcosis has been defined as acute septicaemia, which causes economic losses in farmed fish, especially in rainbow trout. This study was done to evaluate the effects of the essential oils of Satureja bachtiarica and Nigella sativa on the efficacy of lactococcosis vaccine in rainbow trout. A total number of 270 fishes with a mean weight of 120 g were obtained; they were randomly divided into nine groups, each with three replicates, after two weeks of adaptation. The groups were: no injection group, vaccine only group, DMSO injection group, vaccine with 50, 100, and 200 micrograms Intraperitoneal injection (IP) injection. Two, four, and six weeks after vaccination, serological and haematological parameters were evaluated. In the sixth week, 1.7×10^7 cfu as LD50 96 hrs of Lactococcus garvieae were IP injected and the relative survival percentage was calculated. The results indicated that N. sativa essence is effective on the leukocyte population as the highest number of leukocytes were found in fish receiving high concentration of N. sativa. The relative survival rate of the studied fish decreased with decreasing concentrations of the N. sativa essential oil concentration, with a significant difference with control groups (p<0.05). However, using S. bachtiarica was not significantly effective on the relative survival rate of fish. The results of this study indicated that N. sativa essential oil can be used as adjuvant for L. garvieae vaccine, since it resulted in increasing leukocytes and the relative survival rate although S. bachtiarica was not effective on immune parameters of the studied fish

    Assessment of active dopants and p-n junction abruptness using in-situ biased 4D-STEM

    Full text link
    A key issue in the development of high-performance semiconductor devices is the ability to properly measure active dopants at the nanometer scale. 4D scanning transmission electron microscopy and off-axis electron holography have opened up the possibility of studying the electrostatic properties of a p-n junction with nm-scale spatial resolution. The complete description of a p-n junction must take into account the precise evolution of the concentration of dopants around the junction, since the sharpness of the dopant transition directly influences the built-in potential and the maximum electric field. Here, a contacted silicon p-n junction is studied through in-situ biased 4D-STEM. Measurements of electric field, built-in voltage, depletion region width and charge density in the space charge region are combined with analytical equations as well as finite-element simulations in order to evaluate the quality of the junction interface. The nominally-symmetric, highly doped (NA=ND=9 x 1018cm3N_A = N_D = 9\space x \space10^{18} cm^{-3}) junction presents an electric field and built-in voltage much lower than expected for an abrupt junction. These experimental results are consistent with electron holography data. All measured junction parameters are compatible with the presence of an intermediate region with a graded profile of the dopants at the p-n interface. This hypothesis is also consistent with the evolution of the electric field with bias. These results demonstrate that in-situ biased 4D-STEM enables a better understanding of the electrical properties of semiconductor p-n junctions with nm-scale resolution.Comment: 13 pages, 5 figure

    Wolbachia Endosymbionts Modify Drosophila Ovary Protein Levels in a Context-Dependent Manner

    Get PDF
    ABSTRACT Endosymbiosis is a unique form of interaction between organisms, with one organism dwelling inside the other. One of the most widespread endosymbionts is Wolbachia pipientis, a maternally transmitted bacterium carried by insects, crustaceans, mites, and filarial nematodes. Although candidate proteins that contribute to maternal transmission have been identified, the molecular basis for maternal Wolbachia transmission remains largely unknown. To investigate transmission-related processes in response to Wolbachia infection, ovarian proteomes were analyzed from Wolbachia-infected Drosophila melanogaster and D. simulans. Endogenous and variant host-strain combinations were investigated. Significant and differentially abundant ovarian proteins were detected, indicating substantial regulatory changes in response to Wolbachia. Variant Wolbachia strains were associated with a broader impact on the ovary proteome than endogenous Wolbachia strains. The D. melanogaster ovarian environment also exhibited a higher level of diversity of proteomic responses to Wolbachia than D. simulans. Overall, many Wolbachia-responsive ovarian proteins detected in this study were consistent with expectations from the experimental literature. This suggests that context-specific changes in protein abundance contribute to Wolbachia manipulation of transmission-related mechanisms in oogenesis. IMPORTANCE Millions of insect species naturally carry bacterial endosymbionts called Wolbachia. Wolbachia bacteria are transmitted by females to their offspring through a robust egg-loading mechanism. The molecular basis for Wolbachia transmission remains poorly understood at this time, however. This proteomic study identified specific fruit fly ovarian proteins as being upregulated or downregulated in response to Wolbachia infection. The majority of these protein responses correlated specifically with the type of host and Wolbachia strain involved. This work corroborates previously identified factors and mechanisms while also framing the broader context of ovarian manipulation by Wolbachia

    Correlation between brain cortex metabolic and perfusion functions in subjective idiopathic tinnitus

    Get PDF
    Objectives: Subjective tinnitus has associated with abnormal brain metabolism and perfusion found in functional imaging studies by fluorodeoxyglucose (FDG) and technetium99m (TC99m). But there is no study evaluating the association of brain metabolism and perfusion abnormalities in a group of these subjects. The aim of this study was to investigate if there is any significant correlation between the brain perfusion and metabolism abnormalities in subjects with tinnitus. Materials and Methods: In this cross-sectional study, 52 patients were undergone TC99m-ECD single photon emission computerized tomography (SPECT) scan and F18-FDG positron emission tomography (PET). The results of PET and SPECT scanning were fused with MRI to accurate anatomical localization of abnormalities. The analysis was performed using Kendal's correlation, t-test and chi square. Results: Assessing these 52 tinnitus subjects (containing 42 males 76.4%) showed that a significant correlation was found between the brain metabolic function and perfusion (p value 0.001)

    Design, synthesis and biological evaluation of fused naphthofuro[3,2-c]quinoline-6,7,12-triones and pyrano[3,2-c]quinoline-6,7,8,13-tetraones derivatives as ERK inhibitors with efficacy in BRAF-mutant melanoma

    Get PDF
    Approximately 60% of human cancers exhibit enhanced activity of ERK1 and ERK2, reflecting their multiple roles in tumor initiation and progression. Acquired drug resistance, especially mechanisms associated with the reactivation of the MAPK (RAF/MEK/ERK) pathway represent a major challenge to current treatments of melanoma and several other cancers. Recently, targeting ERK has evolved as a potentially attractive strategy to overcome this resistance. Herein, we report the design and synthesis of novel series of fused naphthofuro[3,2-c] quinoline-6,7,12-triones 3a-f and pyrano[3,2-c]quinoline-6,7,8,13-tetraones 5a,b and 6, as potential ERK inhibitors. New inhibitors were synthesized and identified by different spectroscopic techniques and X-ray crystallography. They were evaluated for their ability to inhibit ERK1/2 in an in vitro radioactive kinase assay. 3b and 6 inhibited ERK1 with IC50s of 0.5 and 0.19 mu M, and inhibited ERK2 with IC50s of 0.6 and 0.16 mu M respectively. Kinetic mechanism studies revealed that the inhibitors are ATP-competitive inhibitors where 6 inhibited ERK2 with a K-i of 0.09 mu M. Six of the new inhibitors were tested for their in vitro anticancer activity against the NCI-60 panel of tumor cell lines. Compound 3b and 6 were the most potent against most of the human tumor cell lines tested. Moreover, 3b and 6 inhibited the proliferation of the BRAF mutant A375 melanoma cells with IC50s of 3.7 and 0.13 mu M, respectively. In addition, they suppressed anchorage-dependent colony formation. Treatment of the A375 cell line with 3b and 6 inhibited the phosphorylation of ERK substrates p-90RSK and ELK-1 and induced apoptosis in a dose dependent manner. Finally, a molecular docking study showed the potential binding mode of 3b and 6 within the ATP catalytic binding site of ERK2.Peer reviewe
    corecore