7 research outputs found

    Epstein-Barr virus nuclear antigen 1 interacts with regulator of chromosome condensation 1 dynamically throughout the cell cycle

    Get PDF
    The Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is a sequence-specific DNA binding protein which plays an essential role in viral episome replication and segregation, by recruiting the cellular complex of DNA replication onto the origin (oriP) and by tethering the viral DNA onto the mitotic chromosomes. Whereas the mechanisms of viral DNA replication are well documented, those involved in tethering EBNA1 to the cellular chromatin are far from being understood. Here, we have identified Regulator of Chromosome Condensation 1 (RCC1) as a novel cellular partner for EBNA1. RCC1 is the major nuclear guanine nucleotide exchange factor (RanGEF) for the small GTPase Ran enzyme. RCC1, associated with chromatin, is involved in the formation of RanGTP gradients critical for nucleo-cytoplasmic transport, mitotic spindle formation, and nuclear envelope reassembly following mitosis. Using several approaches, we have demonstrated a direct interaction between these two proteins and found that the EBNA1 domains responsible for EBNA1 tethering to the mitotic chromosomes are also involved in the interaction with RCC1. The use of an EBNA1 peptide array confirmed the interaction of RCC1 with these regions and also the importance of the N-terminal region of RCC1 in this interaction. Finally, using confocal microscopy and FRET analysis to follow the dynamics of interaction between the two proteins throughout the cell cycle, we have demonstrated that EBNA1 and RCC1 closely associate on the chromosomes during metaphase, suggesting an essential role for the interaction during this phase, perhaps in tethering EBNA1 to mitotic chromosomes

    Critical interaction between E1 and E2 glycoproteins determines binding and fusion properties of hepatitis C virus during cell entry

    No full text
    International audienceHepatitis C virus (HCV) envelope glycoproteins E1 and E2 are important mediators for productive cell entry. However, knowledge about their structure, intra- or intermolecular dialogs, and conformational changes is scarce, limiting the design of therapeutic strategies targeting E1E2. Here we sought to investigate how certain domains of E1 and E2 have coevolved to optimize their interactions to promote efficient HCV entry. For this purpose we generated chimeric E1E2 heterodimers derived from two HCV 1a strains to identify and characterize crosstalk between their domains. We found an E1E2 combination that drastically impaired the infectivity of cell culture-derived HCV particles, whereas the reciprocal E1E2 combination led to increased infectivity. Using HCV pseudoparticle assays, we confirmed the opposing entry phenotypes of these heterodimers. By mutagenesis analysis, we identified a particular crosstalk between three amino acids of E1 and the domain III of E2. Its modulation leads to either a full restoration of the functionality of the suboptimal heterodimer or a destabilization of the functional heterodimer. Interestingly, we found that this crosstalk modulates E1E2 binding to HCV entry receptors SR-BI and CD81. In addition, we found for the first time that E1E2 complexes can interact with the first extracellular loop of Claudin-1, whereas soluble E2 did not. These results highlight the critical role of E1 in the modulation of HCV binding to receptors. Finally, we demonstrated that this crosstalk is involved in membrane fusion. Conclusions: These results reveal a multifunctional and crucial interaction between E1 and E2 for HCV entry into cells. Our study highlights the role of E1 as a modulator of HCV binding to receptors and membrane fusion, underlining its potential as an antiviral target. (Hepatology 2014;59:776-788

    An additional ORF on meloe cDNA encodes a new melanoma antigen, MELOE-2, recognized by melanoma-speciWc T cells in the HLA-A2 context

    No full text
    International audienceWe characterized a new melanoma antigen derived from one of the multiple open reading frames (ORFs) of the meloe transcript. The meloe gene is overex-pressed in melanomas as compared to other cancer cell lines and normal tissues. The corresponding transcript is rather unusual, in that it does not contain a long unique ORF but multiple short ORFs. We recently characterized a tumor epitope derived from a polypeptide (MELOE-1) encoded by the ORF 1230-1370 and involved in relapse prevention of melanoma patients treated with autologous tumor inWltrating lymphocytes (TIL). Here we show that the ORF 285-404 encodes a polypeptide called MELOE-2 that also generated a HLA-A2 epitope recognized by a mela-noma-speciWc T cell clone derived from the same TIL population from which we derived the MELOE-1-speciWc T cell clone. We also showed that HLA-A2 melanoma cells were spontaneously recognized by the MELOE-2-speciWc T cell clone, and we detected the presence of MELOE-2 reactive T cells in another TIL population infused to a patient who remained relapse-free after TIL treatment. These results demonstrate that translation of meloe transcript in melanoma cells can produce at least two immuno-genic polypeptides, MELOE-1 and MELOE-2, from two distinct ORFs that could be relevant target for melanoma immunotherapy

    A novel non-integrative single-cycle chimeric HIV lentivector DNA vaccine

    No full text
    International audienceNovel HIV vaccine vectors and strategies are needed to control HIV/AIDS epidemic in humans and eradicate the infection. DNA vaccines alone failed to induce immune responses robust enough to control HIV-1. Development of lentivirus-based DNA vaccines deficient for integration and with a limited replication capacity is an innovative and promising approach. This type of vaccine mimics the early stages of virus infection/replication like the live-attenuated viruses but lacks the inconvenient integration and persistence associated with disease. We developed a novel lentivector DNA vaccine "CAL-SHIV-IN-" that undergoes a single round of replication in the absence of integration resulting in augmented expression of vaccine antigens in vivo. Vaccine gene expression is under control of the LTRs of a naturally attenuated lentivirus, Caprine arthritis encephalitis virus (CAEV) the natural goat lentivirus. The safety of this vaccine prototype was increased by the removal of the integrase coding sequences from the pal gene. We examined the functional properties of this lentivector DNA in cell culture and the immunogenicity in mouse models. Viral proteins were expressed in transfected cells, assembled into viral particles that were able to transduce once target permissive cells. Unlike the parental replication-competent SHIV-KU2 that was detected in DNA samples from any of the serial passage infected cells, CAL-SHIV-IN- DNA was detected only in target cells of the first round of infection, hence demonstrating the single cycle replication of the vaccine. A single dose DNA immunization of humanized NOD/SCID/beta 2 mice showed a substantial increase of IFN-gamma-ELISPOT in splenocytes compared to the former replication and integration defective Delta 4SHIV-KU2 DNA vaccine. (C) 2015 Elsevier Ltd. All rights reserved

    Determinants Involved in Hepatitis C Virus and GB Virus B Primate Host Restriction

    No full text
    International audienceHepatitis C virus (HCV) only infects humans and chimpanzees, while GB virus B (GBV-B), another hepatotropic hepacivirus, infects small New World primates (tamarins and marmosets). In an effort to develop an immunocompetent small primate model for HCV infection to study HCV pathogenesis and vaccine approaches, we investigated the HCV life cycle step(s) that may be restricted in small primate hepatocytes. First, we found that replication-competent, genome-length chimeric HCV RNAs encoding GBV-B structural proteins in place of equivalent HCV sequences designed to allow entry into simian hepatocytes failed to induce viremia in tamarins following intrahepatic inoculation, nor did they lead to progeny virus in permissive, transfected human Huh7.5 hepatoma cells upon serial passage. This likely reflected the disruption of interactions between distantly related structural and nonstructural proteins that are essential for virion production, whereas such cross talk could be restored in similarly designed HCV intergenotypic recombinants via adaptive mutations in NS3 protease or helicase domains. Next, HCV entry into small primate hepatocytes was examined directly using HCV-pseudotyped retroviral particles (HCV-pp). HCV-pp efficiently infected tamarin hepatic cell lines and primary marmoset hepatocyte cultures through the use of the simian CD81 ortholog as a coreceptor, indicating that HCV entry is not restricted in small New World primate hepatocytes. Furthermore, we observed genomic replication and modest virus secretion following infection of primary marmoset hepatocyte cultures with a highly cell culture-adapted HCV strain. Thus, HCV can successfully complete its life cycle in primary simian hepatocytes, suggesting the possibility of adapting some HCV strains to small primate hosts. IMPORTANCE: Hepatitis C virus (HCV) is an important human pathogen that infects over 150 million individuals worldwide and leads to chronic liver disease. The lack of a small animal model for this infection impedes the development of a preventive vaccine and pathogenesis studies. In seeking to establish a small primate model for HCV, we first attempted to generate recombinants between HCV and GB virus B (GBV-B), a hepacivirus that infects small New World primates (tamarins and marmosets). This approach revealed that the genetic distance between these hepaciviruses likely prevented virus morphogenesis. We next showed that HCV pseudoparticles were able to infect tamarin or marmoset hepatocytes efficiently, demonstrating that there was no restriction in HCV entry into these simian cells. Furthermore, we found that a highly cell culture-adapted HCV strain was able to achieve a complete viral cycle in primary marmoset hepatocyte cultures, providing a promising basis for further HCV adaptation to small primate hosts

    A novel non-integrative single-cycle chimeric HIV lentivector DNA vaccine

    No full text
    International audienceNovel HIV vaccine vectors and strategies are needed to control HIV/AIDS epidemic in humans and eradicate the infection. DNA vaccines alone failed to induce immune responses robust enough to control HIV-1. Development of lentivirus-based DNA vaccines deficient for integration and with a limited replication capacity is an innovative and promising approach. This type of vaccine mimics the early stages of virus infection/replication like the live-attenuated viruses but lacks the inconvenient integration and persistence associated with disease. We developed a novel lentivector DNA vaccine "CAL-SHIV-IN-" that undergoes a single round of replication in the absence of integration resulting in augmented expression of vaccine antigens in vivo. Vaccine gene expression is under control of the LTRs of a naturally attenuated lentivirus, Caprine arthritis encephalitis virus (CAEV) the natural goat lentivirus. The safety of this vaccine prototype was increased by the removal of the integrase coding sequences from the pal gene. We examined the functional properties of this lentivector DNA in cell culture and the immunogenicity in mouse models. Viral proteins were expressed in transfected cells, assembled into viral particles that were able to transduce once target permissive cells. Unlike the parental replication-competent SHIV-KU2 that was detected in DNA samples from any of the serial passage infected cells, CAL-SHIV-IN- DNA was detected only in target cells of the first round of infection, hence demonstrating the single cycle replication of the vaccine. A single dose DNA immunization of humanized NOD/SCID/beta 2 mice showed a substantial increase of IFN-gamma-ELISPOT in splenocytes compared to the former replication and integration defective Delta 4SHIV-KU2 DNA vaccine. (C) 2015 Elsevier Ltd. All rights reserved
    corecore