15 research outputs found

    Rubber friction: role of the flash temperature

    Full text link
    When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 0.01 m/s the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v > 0.01 m/s. This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g., for the tire-road friction, and in particular for ABS-breaking systems.Comment: 22 pages, 27 figure

    Anosmia, ageusia, and other COVID-19-like symptoms in association with a positive SARS-CoV-2 test, across six national digital surveillance platforms: an observational study.

    Get PDF
    Background: Multiple voluntary surveillance platforms were developed across the world in response to the COVID-19 pandemic, providing a real-time understanding of population-based COVID-19 epidemiology. During this time, testing criteria broadened and health-care policies matured. We aimed to test whether there were consistent associations of symptoms with SARS-CoV-2 test status across three surveillance platforms in three countries (two platforms per country), during periods of testing and policy changes. Methods: For this observational study, we used data of observations from three volunteer COVID-19 digital surveillance platforms (Carnegie Mellon University and University of Maryland Facebook COVID-19 Symptom Survey, ZOE COVID Symptom Study app, and the Corona Israel study) targeting communities in three countries (Israel, the UK, and the USA; two platforms per country). The study population included adult respondents (age 18–100 years at baseline) who were not health-care workers. We did logistic regression of self-reported symptoms on self-reported SARS-CoV-2 test status (positive or negative), adjusted for age and sex, in each of the study cohorts. We compared odds ratios (ORs) across platforms and countries, and we did meta-analyses assuming a random effects model. We also evaluated testing policy changes, COVID-19 incidence, and time scales of duration of symptoms and symptom-to-test time. Findings: Between April 1 and July 31, 2020, 514 459 tests from over 10 million respondents were recorded in the six surveillance platform datasets. Anosmia–ageusia was the strongest, most consistent symptom associated with a positive COVID-19 test (robust aggregated rank one, meta-analysed random effects OR 16·96, 95% CI 13·13–21·92). Fever (rank two, 6·45, 4·25–9·81), shortness of breath (rank three, 4·69, 3·14–7·01), and cough (rank four, 4·29, 3·13–5·88) were also highly associated with test positivity. The association of symptoms with test status varied by duration of illness, timing of the test, and broader test criteria, as well as over time, by country, and by platform. Interpretation: The strong association of anosmia–ageusia with self-reported positive SARS-CoV-2 test was consistently observed, supporting its validity as a reliable COVID-19 signal, regardless of the participatory surveillance platform, country, phase of illness, or testing policy. These findings show that associations between COVID-19 symptoms and test positivity ranked similarly in a wide range of scenarios. Anosmia, fever, and respiratory symptoms consistently had the strongest effect estimates and were the most appropriate empirical signals for symptom-based public health surveillance in areas with insufficient testing or benchmarking capacity. Collaborative syndromic surveillance could enhance real-time epidemiological investigations and public health utility globally. Funding: National Institutes of Health, National Institute for Health Research, Alzheimer's Society, Wellcome Trust, and Massachusetts Consortium on Pathogen Readiness

    Neurotechnological solutions for post‐traumatic stress disorder: A perspective review and concept proposal

    Get PDF
    AbstractPost‐traumatic stress disorder (PTSD) is an anxiety condition caused by exposure to severe trauma. It is characterised by nightmares, flashbacks, hyper‐vigilance and avoidance behaviour. These all lead to impaired functioning reducing quality of life. PTSD affects 2–5% of the population globally. Most sufferers cannot access effective treatment, leading to impaired psychological functioning reducing quality of life. Eye movement desensitisation and reprocessing (EMDR) is a non‐invasive brain stimulation treatment that has shown significant clinical effectiveness in PTSD. Another treatment modality, that is, trauma‐focused cognitive behavioural therapy is also an effective intervention. However, both evidence‐based treatments are significantly resource intensive as they need trained therapists to deliver them. A concept of a neuro‐digital tool for development is proposed to put to clinical practice of delivering EMDR to improve availability, efficiency and effectiveness of treatment. The evidence in using new technologies to measure sleep, geolocation and conversational analysis of social media to report objective outcome measures is explored. If achieved, this can be fed back to users with data anonymously collated to evaluate and improve the tool. Coproduction would be at the heart of product development so that the tool is acceptable and accessible to people with the condition.</jats:p

    Laser velocimetry seed-particle behavior in shear layers at Mach 12

    No full text

    Sub- and Super-critical Water Depolymerization of Biomass

    No full text
    Biomass may be converted to more useful fuel and chemicals via thermochemical decomposition and biological digestion. Thermochemical conversion processes include three sub-categories: pyrolysis, gasification, and direct liquefaction. Two biomass conversion processes using water have been studied: hydrothermal upgrading under subcritical water and supercritical water gasification in supercritical water conditions. The hydrothermal upgrading or direct liquefaction is a promising technology to treat waste streams from various sources and produce valuable bioproducts such as biocrudes
    corecore