158 research outputs found

    Spin–glass magnetism in RFeTi2O7 (R=Lu and Tb) compounds

    Get PDF
    20th International Conference on Magnetism.The compounds RFeTi2O7 (R=Lu and Tb) crystallize at room temperature in centrosymmetric orthorhombic space group Pcnb. There are five non-equivalent positions of the iron ions: the two positions, Fe’ and Fe”, in the octahedron consisting of the Fe’ tetrahedron and Fe” five-vertex polyhedron and the three positions, Fe1, Fe2 and Fe3 in the mixed Fe-Ti octahedra [1]. The populations of the mixed Fe-Ti sites are different. The crystal structure features lead to atomic disorder in the distribution of the magnetic ions in this compound. From low temperature heat capacity, magnetization and frequency dependent ac susceptibility we conclude that both compounds undergo a spin glass transition at TSG=4.5 and 6 K for R =Lu and Tb, respectively. Since Lu is not magnetic, in RFeTi2O7 the spin glass behavior is caused by the disordered distribution of the magnetic Fe3+ ions in the different crystallographic positions. The substitution of the magnetic and highly anisotropic Tb ion instead of Lu increases TSG because of the additional Tb-Fe exchange interaction, while the critical exponent of the frequency dependence on temperature hardly varies. The spin glass behavior in these crystalline compounds is caused by the presence of competitive interactions that lead to frustration.The financial support of the Spanish MINECO MAT2011-23791, MAT2014-53921-R and Aragonese DGA-IMANA E34 projects is acknowledged.Peer Reviewe

    Thermo-optic hysteresis with bound states in the continuum

    Full text link
    We consider thermo-optic hysteresis in a silicon structure supporting bound state in the continuum. Taking into account radiative heat transfer as a major cooling mechanism we constructed a non-linear model describing the optical response. It is shown that the thermo-optic hysteresis can be obtained with low intensities of incident light I01 W/m2I_0\approx 1~\rm{W/m^2} at the red edge of the visible under the critical coupling condition

    Photoluminescence of monoclinic Li3AlF6 crystals under vacuum ultraviolet and soft X-ray excitations

    Full text link
    Using Bridgman technique we have grown monoclinic β-LiAF crystals suitable for optical studies, performed XRD-identification and Rietveld refinement of the crystal structure and carried out a photoluminescence study upon vacuum ultraviolet (VUV) and extreme ultraviolet (XUV)-excitations, using the low-temperature (T = 7.2 K) time-resolved VUV-spectroscopy technique. The intrinsic PL emission band at 340-350 nm has been identified as due to radiative recombination of self-trapped excitons. The electronic structure parameters were determined: bandgap Eg≈12.5 eV, energy threshold for creation of unrelaxed excitons 11.8eV<En<12.5eV. The PL emission bands at 320-325 and 450 nm were attributed to luminescence caused by lattice defects. We have discovered an efficient excitation of PL emission bands in the energy range of interband transitions (Eex>13.5 eV), as well as in the energy range of core transitions at 130 eV. We have revealed UV-VUV PL emission bands at 170 and 208 nm due to defects. A reasonable assumptions about the origin of the UV-VUV bands were discussed. © 2015 Elsevier B.V. All rights reserved

    Exploration of structural, thermal, vibrational and spectroscopic properties of new noncentrosymmetric double borate Rb3NdB6O12

    Get PDF
    New noncentrosymmetric rare earth borate Rb3NdB6O12 is found in the ternary system Rb2O–Nd2O3–B2O3. The Rb3NdB6O12 powder was fabricated by solid state synthesis at 1050 K for 72 h and the crystal structure was obtained by the Rietveld method. Rb3NdB6O12 crystallized in space group R32 with unit cell parameters a = 13.5236(4), c = 31.162(1) Å, Z = 3. From DSC measurements, the reversible phase transition (I type) in Rb3NdB6O12 is observed at 852–936 K. The 200 μm thick tablet is transparent over the spectral range of 0.3–6.5 μm and the band gap is found as Eg ∼ 6.29 eV. Nonlinear optical response of Rb3NdB6O12 tested via SHG is estimated to be higher than that of K3YB6O12. Blue shift of Nd luminescent lines is found in comparison with other borates. The vibrational parameters of Rb3NdB6O12 are evaluated by experimental methods
    corecore