112 research outputs found

    Spin–glass magnetism in RFeTi2O7 (R=Lu and Tb) compounds

    Get PDF
    20th International Conference on Magnetism.The compounds RFeTi2O7 (R=Lu and Tb) crystallize at room temperature in centrosymmetric orthorhombic space group Pcnb. There are five non-equivalent positions of the iron ions: the two positions, Fe’ and Fe”, in the octahedron consisting of the Fe’ tetrahedron and Fe” five-vertex polyhedron and the three positions, Fe1, Fe2 and Fe3 in the mixed Fe-Ti octahedra [1]. The populations of the mixed Fe-Ti sites are different. The crystal structure features lead to atomic disorder in the distribution of the magnetic ions in this compound. From low temperature heat capacity, magnetization and frequency dependent ac susceptibility we conclude that both compounds undergo a spin glass transition at TSG=4.5 and 6 K for R =Lu and Tb, respectively. Since Lu is not magnetic, in RFeTi2O7 the spin glass behavior is caused by the disordered distribution of the magnetic Fe3+ ions in the different crystallographic positions. The substitution of the magnetic and highly anisotropic Tb ion instead of Lu increases TSG because of the additional Tb-Fe exchange interaction, while the critical exponent of the frequency dependence on temperature hardly varies. The spin glass behavior in these crystalline compounds is caused by the presence of competitive interactions that lead to frustration.The financial support of the Spanish MINECO MAT2011-23791, MAT2014-53921-R and Aragonese DGA-IMANA E34 projects is acknowledged.Peer Reviewe

    Thermo-optic hysteresis with bound states in the continuum

    Full text link
    We consider thermo-optic hysteresis in a silicon structure supporting bound state in the continuum. Taking into account radiative heat transfer as a major cooling mechanism we constructed a non-linear model describing the optical response. It is shown that the thermo-optic hysteresis can be obtained with low intensities of incident light I01 W/m2I_0\approx 1~\rm{W/m^2} at the red edge of the visible under the critical coupling condition

    Photoluminescence of monoclinic Li3AlF6 crystals under vacuum ultraviolet and soft X-ray excitations

    Full text link
    Using Bridgman technique we have grown monoclinic β-LiAF crystals suitable for optical studies, performed XRD-identification and Rietveld refinement of the crystal structure and carried out a photoluminescence study upon vacuum ultraviolet (VUV) and extreme ultraviolet (XUV)-excitations, using the low-temperature (T = 7.2 K) time-resolved VUV-spectroscopy technique. The intrinsic PL emission band at 340-350 nm has been identified as due to radiative recombination of self-trapped excitons. The electronic structure parameters were determined: bandgap Eg≈12.5 eV, energy threshold for creation of unrelaxed excitons 11.8eV<En<12.5eV. The PL emission bands at 320-325 and 450 nm were attributed to luminescence caused by lattice defects. We have discovered an efficient excitation of PL emission bands in the energy range of interband transitions (Eex>13.5 eV), as well as in the energy range of core transitions at 130 eV. We have revealed UV-VUV PL emission bands at 170 and 208 nm due to defects. A reasonable assumptions about the origin of the UV-VUV bands were discussed. © 2015 Elsevier B.V. All rights reserved

    Electronic structure of β-RbSm(MoO4)(2) and chemical bonding in molybdates

    Get PDF
    Microcrystals of orthorhombic rubidium samarium molybdate, β-RbSm(MoO4)2, have been fabricated by solid state synthesis at T = 450 °C, 70 h, and at T = 600 °C, 150 h. The crystal structure has been refined by the Rietveld method in space group Pbcn with cell parameters a = 5.0984(2), b = 18.9742(6) and c = 8.0449(3) Å (RB = 1.72%). Thermal properties of β-RbSm(MoO4)2 were traced by DSC over the temperature range of T = 20–965 °C, and the earlier reported β ↔ α phase transition at T ∼ 860–910 °C was not verified. The electronic structure of β-RbSm(MoO4)2 was studied by employing theoretical calculations and X-ray photoelectron spectroscopy. It has been established that the O 2p-like states contribute mainly to the upper part of the valence band and occupy the valence band maximum, whereas the Mo 4d-like states contribute mainly to the lower part of the valence band. Chemical bonding effects have been analysed from the element core level binding energy data. In addition, it was found that the luminescence spectrum of β-RbSm(MoO4)2 is rather peculiar among the Sm3+ containing materials. The optical refractive index dispersion in β-RbSm(MoO4)2 was also predicted by the first-principles calculations

    Exploration of structural, thermal, vibrational and spectroscopic properties of new noncentrosymmetric double borate Rb3NdB6O12

    Get PDF
    New noncentrosymmetric rare earth borate Rb3NdB6O12 is found in the ternary system Rb2O–Nd2O3–B2O3. The Rb3NdB6O12 powder was fabricated by solid state synthesis at 1050 K for 72 h and the crystal structure was obtained by the Rietveld method. Rb3NdB6O12 crystallized in space group R32 with unit cell parameters a = 13.5236(4), c = 31.162(1) Å, Z = 3. From DSC measurements, the reversible phase transition (I type) in Rb3NdB6O12 is observed at 852–936 K. The 200 μm thick tablet is transparent over the spectral range of 0.3–6.5 μm and the band gap is found as Eg ∼ 6.29 eV. Nonlinear optical response of Rb3NdB6O12 tested via SHG is estimated to be higher than that of K3YB6O12. Blue shift of Nd luminescent lines is found in comparison with other borates. The vibrational parameters of Rb3NdB6O12 are evaluated by experimental methods

    Quaternary Selenides EuLnCuSe3: Synthesis, Structures, Properties and In Silico Studies

    Full text link
    In this work, we report on the synthesis, in-depth crystal structure studies as well as optical and magnetic properties of newly synthesized heterometallic quaternary selenides of the Eu+2Ln+3Cu+1Se3 composition. Crystal structures of the obtained compounds were refined by the derivative difference minimization (DDM) method from the powder X-ray diffraction data. The structures are found to belong to orthorhombic space groups Pnma (structure type Ba2MnS3 for EuLaCuSe3 and structure type Eu2CuS3 for EuLnCuSe3, where Ln = Sm, Gd, Tb, Dy, Ho and Y) and Cmcm (structure type KZrCuS3 for EuLnCuSe3, where Ln = Tm, Yb and Lu). Space groups Pnma and Cmcm were delimited based on the tolerance factor t’, and vibrational spectroscopy additionally confirmed the formation of three structural types. With a decrease in the ionic radius of Ln3+ in the reported structures, the distortion of the (LnCuSe3) layers decreases, and a gradual formation of the more symmetric structure occurs in the sequence Ba2MnS3 → Eu2CuS3 → KZrCuS3. According to magnetic studies, compounds EuLnCuSe3 (Ln = Tb, Dy, Ho and Tm) each exhibit ferrimagnetic properties with transition temperatures ranging from 4.7 to 6.3 K. A negative magnetization effect is observed for compound EuHoCuSe3 at temperatures below 4.8 K. The magnetic properties of the discussed selenides and isostructural sulfides were compared. The direct optical band gaps for EuLnCuSe3, subtracted from the corresponding diffuse reflectance spectra, were found to be 1.87– 2.09 eV. Deviation between experimental and calculated band gaps is ascribed to lower d states of Eu2+ in the crystal field of EuLnCuSe3, while anomalous narrowing of the band gap of EuYbCuSe3 is explained by the low-lying charge-transfer state. Ab initio calculations of the crystal structures, elastic properties and phonon spectra of the reported compounds were performed. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Funding: The research was supported by the Tyumen region within the framework of the grant agreement in the form of a grant to non-profit organizations no. 89-don dated 07.12.2020. This study was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. FEUZ-2020-0054). This work was supported by state assignment of the Ministry of Science and Higher Education of the Russian Federation (Project Reg. No. 720000Ф.99.1.БЗ85АА13000). The work was conducted within the framework of the budget project № 0287-2021-0013 for the Institute of Chemistry and Chemical Technology SB RAS

    Spin state crossover in Co3BO5

    Get PDF
    We have investigated the spin and oxidation states of Co in Co3BO5 using x-ray magnetic circular dichroism (XMCD) and dc magnetic susceptibility measurements. At low temperatures, XMCD experiments have been performed at the Co K-edge in Co3BO5 and Co2FeBO5 single crystals in the fully ferrimagnetically ordered phase. The Co (K-edge) XMCD signal is found to be related to the Co2+ magnetic sublattices in both compounds, providing strong experimental support for the low-spin (LS) Co3+ scenario. The paramagnetic susceptibility is highly anisotropic. An estimation of the effective magnetic moment in the temperature range 100-250 K correlates well with two Co2+ ions in the high-spin (HS) state and some orbital contribution, while Co3+ remains in the LS state. The crystal structure of the Co3BO5 single crystal has been solved in detail at the T range 296-703 K. The unit cell parameters and volume show anomalies at 500 and 700 K. The octahedral environment of the Co4 site strongly changes with heating. The generalized gradient approximation with Hubbard U correction calculations have revealed that, at low-temperatures, the system is insulating with a band gap of 1.4 eV, and the Co2+ ions are in the HS state, while Co3+ are in the LS state. At high temperatures (T > 700 K), the charge ordering disappears, and the system becomes metallic with all Co ions in 3d7 electronic configuration and HS state. © 2021 American Physical Society.We acknowledge many inspirational discussions on the topic of this paper with the late Natalia Ivanova and Leonard Bezmaternykh. The authors acknowledge A. Ney for allowing us to use the XANES spectrum of film. We are grateful to the Russian Foundation for Basic Research (Project No. 20-02-00559) and President Council on Grants (Project No. МК-2339.2020.2) for supporting this paper. This paper was carried out within the state assignment of the Russian Ministry of Science and High Education via program “Quantum”' (No. AAAA-A18-118020190095-4). We also acknowledge support by Russian Ministry of Education and Science via Contract No. 02.A03.21.0006. We acknowledge financial support from the Spanish Ministry of Economy, Industry and Competitiveness (MINECO, Grant No. MAT2017-83468-R) and from the regional Government of Aragon (E12-20R RASMIA project)

    Polymorphs of Rb3ScF6: X-ray and Neutron Diffraction, Solid-State NMR, and Density Functional Theory Calculations Study

    Full text link
    The crystal structures of three polymorphs of Rb3ScF6 have been determined through a combination of synchrotron, laboratory X-ray, and neutron powder diffraction, electron diffraction, and multinuclear high-field solid-state NMR studies. The room temperature (RT; α) and medium-temperature (β) structures are tetragonal, with space groups I41/a (Z = 80) and I4/m (Z = 10) and lattice parameters a = 20.2561(4) Å, c = 36.5160(0) Å and a = 14.4093(2) Å, c = 9.2015(1) Å at RT and 187 °C, respectively. The high-temperature (γ) structure is cubic space group Fm3¯ m (Z = 4) with a = 9.1944(1) Å at 250 °C. The temperatures of the phase transitions were measured at 141 and 201 °C. The three α, β, and γRb3ScF6 phases are isostructural with the α, β, and δforms of the potassium cryolite. Detailed structural characterizations were performed by density functional theory as well as NMR. In the case of the β polymorph, the dynamic rotations of the ScF6 octahedra of both Sc crystallographic sites have been detailed. © 2021 American Chemical Society.For DFT calculations, we thank the “Centre de Calcul Scientifique en region Centre” (Orléans, France). We acknowledge the Interface, Confinement, Materials and Nanostructures (Orléans, France) for access to their transmission electron microscope. Financial support from the IR-RMN-THC Fr3050 CNRS for conducting the research is gratefully acknowledged. This study was also financially supported by VEGA-2/0060/18 and ITMS project (code 313021T081, Research & Innovation Operational Programme funded by the ERDF). We thank also Dr. F. Vivet, Dr. F. Fayon, and Dr. D. Massiot for useful discussions

    Triple molybdate scheelite-type upconversion phosphor NaCaLa(MoO4)3:Er3+/Yb3+: structural and spectroscopic properties

    Get PDF
    Triple molybdate NaCaLa(1-x-y)(MoO4)3:xEr3+,yYb3+ (x = y = 0, x = 0.05 and y = 0.45, x = 0.1 and y = 0.2, x = 0.2 and y = 0) phosphors were successfully synthesized by the microwave sol-gel method for the first time. Well-crystallized particles formed after heattreatment at 900°C for 16 h showed a fine and homogeneous morphology with particle sizes of 2-3 μm. The structures were refined by Rietveld method in space group I41/a. The optical properties were examined comparatively using photoluminescence emission and Raman spectroscopy. Under the excitation at 980 nm, the NaCaLa0.7(MoO4)3:0.1Er3+,0.2Yb3+ and NaCaLa0.5(MoO4)3:0.05Er3+,0.45Yb3+ particles exhibited a strong 525-nm emission band, a weaker 550-nm emission band in the green region, and weak 655-nm, 490-nm and 410-nm emission bands in the red, blue and violet regions. The pump power dependence and Commission Internationale de L'Eclairage chromaticity of the upconversion emission intensity were evaluated in detail
    corecore