103 research outputs found

    Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: Observations in an ex vivo model of coronary computed tomography angiography

    Get PDF
    Assessment of attenuation (measured in Hounsfield units, HU) of human coronary plaques was performed using multislice computed tomography (MSCT) in an ex vivo model. In three ex vivo specimens of left coronary arteries in oil, MSCT was performed after intracoronary injection of four solutions of contrast material (400 mgI/ml iomeprol). The four solutions were diluted as follows: 1/∞, 1/200, 1/80, and 1/20. All scans were performe

    Diagnostic accuracy of 64-slice computed tomography coronary angiography for the detection of in-stent restenosis: A meta-analysis

    Get PDF
    Background: We sought to evaluate the diagnostic accuracy of 64-slice multi-detector row computed tomography (MDCT) compared with invasive coronary angiography for in-stent restenosis (ISR) detection. Methods: MEDLINE, Cochrane library, and BioMed Central database searches were performed until April 2009 for original articles. Inclusion criteria were (1) 64-MDCT was used as a diagnostic test for ISR, with >50% diameter stenosis selected as the cut-off criterion for significant ISR, using invasive coronary angiography and quantitative coronary angiography as the standard of reference; (2) absolute numbers of true positive, false positive, true negative, and false negative results could be derived. Standard meta-analytic methods were applied. Results: Nine studies with a total of 598 patients with 978 stents included were considered eligible. On average, 9% of stents were unassessable (range 0-42%). Accuracy tests with 95% confidence intervals (CIs) comparing 64-MDCT vs invasive coronary angiography showed that pooled sensitivity, specificity, positive and negative likelihood ratio (random effect model) values were: 86% (95% CI 80-91%), 93% (95% CI 91-95%), 12.32 (95% CI 7.26-20.92), 0.18 (95% CI 0.12-0.28) for binary ISR detection. The symmetric area under the curve value was 0.94, indicating good agreement between 64-MDCT and invasive coronary angiography. Conclusions: 64-MDCT has a good diagnostic accuracy for ISR detection with a particularly high negative predictive value. However, still a relatively large proportion of stents remains uninterpretable. Accordingly, only in selected patients, 64-MDCT may serve as a potential alternative noninvasive method to rule out ISR

    Diagnostic accuracy of computed tomography coronary angiography in patients with a zero calcium score

    Get PDF
    To evaluate the diagnostic accuracy of 64-slice CT coronary angiography (CT-CA) for the detection of significant coronary artery stenosis in patients with zero on the Agatston Calcium Score (CACS). We enrolled 279 consecutive patients (96 male, mean age 48±12 years) with suspected coronary artery disease. Patients were symptomatic (n=208) or asymptomatic (n=71), and underwent conventional coronary angiography (CAG). For CT-CA we administered an IV bolus of 100 ml of iodinated contrast material. CT-CA was compared to CAG using a threshold for significant stenosis of ≤50%. The prevalence of disease demonstrated at CAG was 15% (1.4% in asymptomatic). The population at CAG showed no or non-significant disease in 85% (238/279), single vessel disease in 9% (25/279), and multi-vessel disease in 6% (16/279). Sensitivity, specificity, and positive and negative predictive values of CT-CA vs. CAG on the patient level were 100%, 95%, 76%, and 100% in the overall population and 100%, 100%, 100%, and 100% in asymptomatic patients, respectively. CT-CA proves high diagnostic performance in patients with or without symptoms and with zero CACS. The prevalence of significant disease detected by CT-CA was not negligible in asymptomatic patients. The role of CT-CA in asymptomatic patients remains uncertain

    Follow-up of internal mammary artery stent with 64-slice CT

    Get PDF
    We present a case of 81-year-old woman complaining chest pain after minimal efforts who underwent multiple coronary artery bypass grafts (CABGs) during the last 15 years. A significant in-stent re-stenosis was found at ostium of left internal mammary artery (LIMA). A non-invasive CT coronary angiography (CT-CA) was performed after 6-month follow-up. CT-CA is a reliable non-invasive technique for the follow-up of stents in coronary artery bypass grafts

    Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms

    Get PDF
    Efficiently obtaining a reliable coronary artery centerline from computed tomography angiography data is relevant in clinical practice. Whereas numerous methods have been presented for this purpose, up to now no standardized evaluation methodology has been published to reliably evaluate and compare the performance of the existing or newly developed coronary artery centerline extraction algorithms. This paper describes a standardized evaluation methodology and reference database for the quantitative evaluation of coronary artery centerline extraction algorithms. The contribution of this work is fourfold: 1) a method is described to create a consensus centerline with multiple observers, 2) well-defined measures are presented for the evaluation of coronary artery centerline extraction algorithms, 3) a database containing thirty-two cardiac CTA datasets with corresponding reference standard is described and made available, and 4) thirteen coronary artery centerline extraction algorithms, implemented by different research groups, are quantitatively evaluated and compared. The presented evaluation framework is made available to the medical imaging community for benchmarking existing or newly developed coronary centerline extraction algorithms

    Influence of convolution filtering on coronary plaque attenuation values: observations in an ex vivo model of multislice computed tomography coronary angiography

    Get PDF
    Attenuation variability (measured in Hounsfield Units, HU) of human coronary plaques using multislice computed tomography (MSCT) was evaluated in an ex vivo model with increasing convolution kernels. MSCT was performed in seven ex vivo left coronary arteries sunk into oil followingthe instillation of saline (1/∞) and a 1/50 solution of contrast material (400 mgI/ml iomeprol). Scan parameters were: slices/collimation, 16/0.75 mm; rotation time, 375 ms. Four convolution kernels were used: b30f-smooth, b36f-medium smooth, b46f-medium and b60f-sharp. An experienced radiologist scored for the presence of plaques and measured the attenuation in lumen, calcified and noncalcified plaques and the surrounding oil. The results were compared by the ANOVA test and correlated with Pearson’s test. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. The mean attenuation values were significantly different between the four filters (p < 0.0001) in each structure with both solutions. After clustering for the filter, all of the noncalcified plaque values (20.8 ± 39.1, 14.2 ± 35.8, 14.0 ± 32.0, 3.2 ± 32.4 HU with saline; 74.7 ± 66.6, 68.2 ± 63.3, 66.3 ± 66.5, 48.5 ± 60.0 HU in contrast solution) were significantly different, with the exception of the pair b36f–b46f, for which a moderate-high correlation was generally found. Improved SNRs and CNRs were achieved by b30f and b46f. The use of different convolution filters significantly modifief the attenuation values, while sharper filtering increased the calcified plaque attenuation and reduced the noncalcified plaque attenuation

    Small coronary calcifications are not detectable by 64-slice contrast enhanced computed tomography

    Get PDF
    Recently, small calcifications have been associated with unstable plaques. Plaque calcifications are both in intravascular ultrasound (IVUS) and multi-slice computed tomography (MSCT) easily recognized. However, smaller calcifications might be missed on MSCT due to its lower resolution. Because it is unknown to which extent calcifications can be detected with MSCT, we compared calcification detection on contrast enhanced MSCT with IVUS. The coronary arteries of patients with myocardial infarction or unstable angina were imaged by 64-slice MSCT angiography and IVUS. The IVUS and MSCT images were registered and the arteries were inspected on the presence of calcifications on both modalities independently. We measured the length and the maximum circumferential angle of each calcification on IVUS. In 31 arteries, we found 99 calcifications on IVUS, of which only 47 were also detected on MSCT. The calcifications missed on MSCT (n = 52) were significantly smaller in angle (27° ± 16° vs. 59° ± 31°) and length (1.4 ± 0.8 vs. 3.7 ± 2.2 mm) than those detected on MSCT. Calcifications could only be detected reliably on MSCT if they were larger than 2.1 mm in length or 36° in angle. Half of the calcifications seen on the IVUS images cannot be detected on contrast enhanced 64-slice MSCT angiography images because of their size. The limited resolution of MSCT is the main reason for missing small calcifications

    Prevalence of anatomical variants and coronary anomalies in 543 consecutive patients studied with 64-slice CT coronary angiography

    Get PDF
    The aim of our study was to assess the prevalence of variants and anomalies of the coronary artery tree in patients who underwent 64-slice computed tomography coronary angiography (CT-CA) for suspected or known coronary artery disease. A total of 543 patients (389 male, mean age 60.5 ± 10.9) were reviewed for coronary artery variants and anomalies including post-processing tools. The majority of segments were identified according to the American Heart Association scheme. The coronary dominance pattern results were: right, 86.6%; left, 9.2%; balanced, 4.2%. The left main coronary artery had a mean length of 112 ± 55 mm. The intermediate branch was present in the 21.9%. A variable number of diagonals (one, 25%; two, 49.7%; more than two, 24%; none, 1.3%) and marginals (one, 35.2%; two, 46.2%; more than two, 18%; none, 0.6%) was visualized. Furthermore, CT-CA may visualize smaller branches such as the conus branch artery (98%), the sinus node artery (91.6%), and the septal branches (93%). Single or associated coronary anomalies occurred in 18.4% of the patients, with the following distribution: 43 anomalies of origin and course, 68 intrinsic anomalies (59 myocardial bridging, nine aneurisms), three fistulas. In conclusion, 64-slice CT-CA provides optimal visualization of the variable and complex anatomy of coronary arteries because of the improved isotropic spatial resolution and flexible post-processing tool

    Is there a role for CT coronary angiography in patients with symptomatic angina? Effect of coronary calcium score on identification of stenosis

    Get PDF
    Present guidelines discourage the use of CT coronary angiography (CTCA) in symptomatic angina patients. We examined the relation between coronary calcium score (CS) and the performance of CTCA in patients with stable and unstable angina in order to understand under which conditions CTCA might be a gate-keeper to conventional coronary angiography (CCA) in such patients. We included 360 patients between 50 and 70 years old with stable and unstable angina who were clinically referred for CCA irrespective of CS. Patients received CS and CCTA on 64-slice scanners in a multicenter cross-sectional trial. The institutional review board approved the study. Diagnostic performance of CTCA to detect or rule out significant coronary artery disease was calculated on a per patient level in pre-defined CS categories. The prevalence of significant coronary artery disease strongly increased with CS. Negative CTCA were associated with a negative likelihood ratio of <0.1 independent of CS. Positive CTCA was associated with a high positive likelihood ratio of 9.4 if CS was <10. However, for higher CS the positive likelihood ratio never exceeded 3.0 and for CS >400 it decreased to 1.3. In the 62 (17%) patients with CS <10, CTCA reliably identified the 42 (68%) of these patients without significant CAD, at no false negative CTCA scans. In symptomatic angina patients, a negative CTCA reliably excludes significant CAD but the additional value of CTCA decreases sharply with CS >10 and especially with CS >400. In patients with CS <10, CTCA provides excellent diagnostic performance
    corecore