10,902 research outputs found
Splitting Sensitivity of the Ground and 7.6 eV Isomeric States of 229Th
The lowest-known excited state in nuclei is the 7.6 eV isomer of 229Th. This
energy is within the range of laser-based investigations that could allow
accurate measurements of possible temporal variation of this energy splitting.
This in turn could probe temporal variation of the fine-structure constant or
other parameters in the nuclear Hamiltonian. We investigate the sensitivity of
this transition energy to these quantities. We find that the two states are
predicted to have identical deformations and thus the same Coulomb energies
within the accuracy of the model (viz., within roughly 30 keV). We therefore
find no enhanced sensitivity to variation of the fine-structure constant. In
the case of the strong interaction the energy splitting is found to have a
complicated dependence on several parameters of the interaction, which makes an
accurate prediction of sensitivity to temporal changes of fundamental constants
problematical. Neither the strong- nor Coulomb-interaction contributions to the
energy splitting of this doublet can be constrained within an accuracy better
than a few tens of keV, so that only upper limits can be set on the possible
sensitivity to temporal variations of the fundamental constants.Comment: 4 pages, 2 figure
The relevance of a rules-based maize marketing policy : an experimental case study of Zambia
Strategic interaction between public and private actors is increasingly recognized as an important determinant of agricultural market performance in Africa and elsewhere. Trust and consultation tend to positively affect private activity while uncertainty of government behavior impedes it. This paper reports on a laboratory experiment based on a stylized model of the Zambian maize market. The experiment facilitates a comparison between discretionary interventionism and a rules-based policy in which the government pre-commits itself to a future course of action. A simple precommitment rule can, in theory, overcome the prevailing strategic dilemma by encouraging private sector participation. Although this result is also borne out in the economic experiment, the improvement in private sector activity is surprisingly small and not statistically significant due to irrationally cautious choices by experimental governments. Encouragingly, a rules-based policy promotes a much more stable market outcome, thereby substantially reducing the risk of severe food shortages. These results underscore the importance of predictable and transparent rules for the state's involvement in agricultural markets.Markets and Market Access,Food&Beverage Industry,Public Sector Corruption&Anticorruption Measures,Food Security,Access to Markets
Breakup of Air Bubbles in Water: Memory and Breakdown of Cylindrical Symmetry
Using high-speed video, we have studied air bubbles detaching from an
underwater nozzle. As a bubble distorts, it forms a thin neck which develops a
singular shape as it pinches off. As in other singularities, the minimum neck
radius scales with the time until breakup. However, because the air-water
interfacial tension does not drive breakup, even small initial cylindrical
asymmetries are preserved throughout the collapse. This novel, non-universal
singularity retains a memory of the nozzle shape, size and tilt angle. In the
last stages, the air appears to tear instead of pinch.Comment: Submitted to Phys. Rev. Lett. 4 pages, 4 figures. Revised for
resubmissio
Effect of Age and Food Novelty on Food Memory
The influence of age of the consumer and food novelty on incidentally learned food memory was investigated by providing a meal containing novel and familiar target items under the pretense of a study on hunger feelings to 34 young and 36 older participants in France and to 24 young and 20 older participants in Denmark and testing them a day later on recognition of the targets among a set of distractors that were variations of the target made by adding or subtracting taste (sour or sweet) or aroma (orange or red berry flavor). Memory was also tested by asking participants to indicate whether the target and the distractors were equal to or less or more intense than the remembered target in sourness sweetness and aroma. The results showed that when novelty is defined as whether people know or not a given product, it has a strong influence on memory performance, but that age did not, the elderly performing just as well as the young. The change in the distractors was more readily detected with familiar than with novel targets where the participants were still confused by the target itself. Special attention is given to the influence of the incidental learning paradigm on the outcome and to the ways in which it differs from traditional recognition experiments
The Eastwood-Singer gauge in Einstein spaces
Electrodynamics in curved spacetime can be studied in the Eastwood--Singer
gauge, which has the advantage of respecting the invariance under conformal
rescalings of the Maxwell equations. Such a construction is here studied in
Einstein spaces, for which the Ricci tensor is proportional to the metric. The
classical field equations for the potential are then equivalent to first
solving a scalar wave equation with cosmological constant, and then solving a
vector wave equation where the inhomogeneous term is obtained from the gradient
of the solution of the scalar wave equation. The Eastwood--Singer condition
leads to a field equation on the potential which is preserved under gauge
transformations provided that the scalar function therein obeys a fourth-order
equation where the highest-order term is the wave operator composed with
itself. The second-order scalar equation is here solved in de Sitter spacetime,
and also the fourth-order equation in a particular case, and these solutions
are found to admit an exponential decay at large time provided that
square-integrability for positive time is required. Last, the vector wave
equation in the Eastwood-Singer gauge is solved explicitly when the potential
is taken to depend only on the time variable.Comment: 13 pages. Section 6, with new original calculations, has been added,
and the presentation has been improve
Mass-metallicity relation from z=5 to the present: Evidence for a transition in the mode of galaxy growth at z=2.6 due to the end of sustained primordial gas infall
We analyze the redshift evolution of the mass-metallicity relation in a
sample of 110 Damped Ly absorbers spanning the redshift range
and find that the zero-point of the correlation changes
significantly with redshift. The evolution is such that the zero-point is
constant at the early phases of galaxy growth (i.e. no evolution) but then
features a sharp break at with a rapid incline towards lower
redshifts such that damped absorbers of identical masses are more metal rich at
later times than earlier. The slope of this mass metallicity correlation
evolution is dex per unit redshift.
We compare this result to similar studies of the redshift evolution of
emission selected galaxy samples and find a remarkable agreement with the slope
of the evolution of galaxies of stellar mass log.
This allows us to form an observational tie between damped absorbers and
galaxies seen in emission.
We use results from simulations to infer the virial mass of the dark matter
halo of a typical DLA galaxy and find a ratio .
We compare our results to those of several other studies that have reported
strong transition-like events at redshifts around and argue that
all those observations can be understood as the consequence of a transition
from a situation where galaxies were fed more unprocessed infalling gas than
they could easily consume to one where they suddenly become infall starved and
turn to mainly processing, or re-processing, of previously acquired gas.Comment: 8 pages, 5 figures, accepted for publication in MNRA
The mass-metallicity relation for high-redshift damped Ly-alpha galaxies
We used our database of ESO VLT-UVES spectra of quasars to build up a sample
of 67 Damped Lyman-alpha (DLA) systems with redshifts 1.7<zabs<3.7. For each
system, we measured average metallicities relative to Solar, [X/H] (with either
X=Zn, S or Si), and the velocity widths of low-ionization line profiles, W1. We
find that there is a tight correlation between the two quantities, detected at
the 5sigma significance level. The existence of such a correlation, over more
than two orders of magnitude spread in metallicity, is likely to be the
consequence of an underlying mass-metallicity relation for the galaxies
responsible for DLA absorption lines. The best-fit linear relation is
[X/H]=1.35(\pm 0.11)\log W1 -3.69(\pm 0.18)$ with W1 expressed in km/s. While
the slope of this velocity-metallicity relation is the same within
uncertainties between the higher and the lower redshift bins of our sample,
there is a hint of an increase of the intercept point of the relation with
decreasing redshift. This suggests that galaxy halos of a given mass tend to
become more metal-rich with time. Moreover, the slope of this relation is
consistent with that of the luminosity-metallicity relation for local galaxies.
The DLA systems having the lowest metallicities among the DLA population would
therefore, on average, correspond to the galaxies having the lowest masses. In
turn, these galaxies should have the lowest luminosities among the DLA galaxy
population. This may explain the recent result that the few DLA systems with
detected Ly-alpha emission have higher than average metallicities.Comment: proceedings of IAU Colloquium No. 199, 2005, ``Probing Galaxies
through Quasar Absorption Lines'', P.R. Williams, C. Shu, B. Menard, ed
Mathisson's helical motions for a spinning particle --- are they unphysical?
It has been asserted in the literature that Mathisson's helical motions are
unphysical, with the argument that their radius can be arbitrarily large. We
revisit Mathisson's helical motions of a free spinning particle, and observe
that such statement is unfounded. Their radius is finite and confined to the
disk of centroids. We argue that the helical motions are perfectly valid and
physically equivalent descriptions of the motion of a spinning body, the
difference between them being the choice of the representative point of the
particle, thus a gauge choice. We discuss the kinematical explanation of these
motions, and we dynamically interpret them through the concept of hidden
momentum. We also show that, contrary to previous claims, the frequency of the
helical motions coincides, even in the relativistic limit, with the
zitterbewegung frequency of the Dirac equation for the electron
The Properties of Field Elliptical Galaxies at Intermediate Redshift. I: Empirical Scaling Laws
We present measurements of the Fundamental Plane (FP) parameters (the
effective radius, the mean effective surface brightness, and the central
velocity dispersion) of six field elliptical galaxies at intermediate redshift.
The imaging is taken from the Medium Deep Survey of the Hubble Space Telescope,
while the kinematical data are obtained from long-slit spectroscopy using the
3.6-m ESO telescope. The Fundamental Plane appears well defined in the field
even at redshift 0.3. The data show a shift in the FP zero point with
respect to the local relation, possibly indicating modest evolution, consistent
with the result found for intermediate redshift cluster samples. The FP slopes
derived for our field data, plus other cluster ellipticals at intermediate
redshift taken from the literature, differ from the local ones, but are still
consistent with the interpretation of the FP as a result of homology, of the
virial theorem and of the existence of a relation between luminosity and mass,
. We also derive the surface brightness vs. effective
radius relation for nine galaxies with redshift up to , and data
from the literature; the evolution that can be inferred is consistent with what
is found using the FP.Comment: 17 pages, including 9 figures, MNRAS, accepte
- …
