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It has been asserted in the literature that Mathisson’s helical motions are unphysical, with the argument

that their radius can be arbitrarily large. We revisit Mathisson’s helical motions of a free spinning particle,

and observe that such statement is unfounded. Their radius is finite and confined to the disk of centroids.

We argue that the helical motions are perfectly valid and physically equivalent descriptions of the motion

of a spinning body, the difference between them being the choice of the representative point of the

particle, thus a gauge choice. We discuss the kinematical explanation of these motions, and we

dynamically interpret them through the concept of hidden momentum. We also show that, contrary to

previous claims, the frequency of the helical motions coincides, even in the relativistic limit, with the

zitterbewegung frequency of the Dirac equation for the electron.
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I. INTRODUCTION

The equations of motion for spinning pole-dipole parti-
cles were first derived by Mathisson [1] in the context of
general relativity, though similar equations, for the case of
flat spacetime, had been derived earlier by Frenkel [2] (see
also [3]) in a special relativistic treatment applying to a
classical model of an electron. These equations have then
been further worked out and rederived most notably by
Weyssenhoff-Raabe [4,5], Möller [6], Bhabha-Corben
[7–9], Dixon [10] and Gralla et al. [11], in the framework
of special relativity; and in general relativity by Papapetrou
[12], who carried out an exact derivation for pole-dipole
particles, Tulczyjew [13], Taub [14], Dixon [15,16] and
Souriau [17,18], who made derivations covariant at each
step, and more recently Natário [19] and Gralla et al. [20].
To form a determined system, these equations require a
supplementary condition, which amounts to specify the
reference worldline relative to which the moments of the
particle are taken. The natural choice is to require it to be
the center of mass; however by contrast with Newtonian
mechanics, in relativity the center of mass/energy of a
spinning particle is an observer-dependent point. Thus, in
order to use the concept of center of mass to fix a worldline
of reference, a particular observer must be specified. This,
as shall be explained in detail below, is done through a
spin condition S��u� ¼ 0 (for some unit timelike vector

field u�), stating that the reference worldline is the center
of mass as measured by some observer of 4-velocity u�. Its
choice can be regarded as a gauge fixing.

Mathisson’s helical solutions [21] arise when one uses
the supplementary condition S��U� ¼ 0, where U� is the
center of mass 4-velocity, thus stating that the center of
mass is measured in its proper frame (i.e., the frame where
it is at rest). This condition was first used by Frenkel [2],
and later embodied in the derivation by Mathisson [1], and
also employed by Pirani [22] as a mean of closing the
Papapetrou equations. It will be hereafter dubbed as the
‘‘Mathisson-Pirani’’ supplementary condition, as it is best
known. The helical motions have been studied since by
many authors (see, e.g., [4–9,23–25]).
These helical motions exist even for a free particle in flat

spacetime, and are still rather mysterious today. They were
first interpreted in [21], for the case of the electron, as the
classical counterpart of the ‘‘zitterbewegung’’ observed in
Dirac’s equation, based on the coincidence of frequencies
obtained in the nonrelativistic limit; this point of view was
then supported by other authors, e.g., [8,9,12,23,26,27].
Möller [6] provided a kinematical interpretation of the
helices as arising from the motions of what he called the
‘‘pseudocenters of mass’’ (see equivalent treatment in
Sec. V below). In spite of this, they have been deemed
unphysical [15,28] with the argument that the radius of the
helices can be arbitrarily large [4,5,15,28,29], which would
be contradicted by experiment (this was actually what
initially motivated Dixon’s multipole approach to
extended bodies [15], embodying the alternative condition
S��P� ¼ 0, proposed by Tulczyjew). This would make

them also inconsistent with Möller’s scheme. Also, it was
argued [4,5] that the coincidence with the frequency of
Dirac’s equation zitterbewegung motions holds only in the
nonrelativistic limit.
Herein we will show that the assessments regarding the

unphysical nature of the helical motions are unfounded and
originate from a mistake in the treatment in [4,5]. We argue
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otherwise: that they are physically acceptable, being ac-
tually alternative and equivalent (albeit more complicated)
descriptions of the motion of a spinning body; these differ-
ent descriptions are a matter of choice, resulting from the
incompleteness of the gauge fixing provided by the
Mathisson-Pirani supplementary condition, which leaves
a residual gauge freedom. Their radius is shown to be
contained within the disk of centroids, whose size is ac-
tually the minimum size a classical spinning particle can
have if it is to have finite angular momentum and positive
mass without violating special relativity. We kinematically
explain these solutions, showing they are consistent with
Möller’s interpretation. And we show also that they are
dynamically consistent descriptions of the motion of the
body, which can be understood through the same concept
of ‘‘hidden momentum’’ recently proposed in [20] as an
explanation for the bobbings observed in numerical simu-
lations of binary systems.

Finally, regarding the correspondence with the quantum
problem, we point out that the assertions in [4,5] that the
frequencies only coincide in the nonrelativistic limit origi-
nate from the same mistake that leads to the arbitrarily
large radius; indeed the frequencies coincide exactly.

A. Notation and conventions

We summarize here the conventions that we use for the
various quantities necessary to describe the motion of a
spinning particle:

(1) U� � dz�=d� is the tangent vector to the worldline
of reference z�ð�Þ (in this work it amounts
to the 4-velocity of some suitably defined center of
mass);

(2) u� denotes a generic unit timelike vector defined
along the worldline of reference; it can be thought
as the instantaneous 4-velocity of an observer
OðuÞ;

(3) �ðz; uÞ is the hypersurface generated by all geodesics
orthogonal to u� at a point z�; in flat spacetime, it is
simply the 3-space orthogonal to u� (it can be
thought of as the instantaneous rest space of OðuÞ);

(4) x�CMðuÞ is the center of mass as measured in the

instantaneous rest space of OðuÞ;
(5) Centroids: following [30], we dub the centers of

mass x�CMðuÞ as measured by arbitrary observers as

centroids; these divide in two subclasses: 1) proper
center of mass x�CMðUÞ—center of mass as measured

in its own rest frame; 2) nonproper center of mass—
center of mass measured by an observer not comov-
ing with it. Sometimes we shall use the abbreviation
CM for center of mass.

(6) Masses: mðuÞ � �P�u� denotes the mass as mea-
sured byOðuÞ; bym � mðUÞ ¼ �P�U� we denote
the proper mass (i.e., the mass measured in the CM
frame); andM � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�P�P�

p
is the mass as measured

in the zero 3-momentum frame.

(7) We denote by S��? the angular momentum tensor
about the centroid x�CMðPÞ measured in the zero

3-momentum frame (i.e., S��? P� ¼ 0), and by S�?
the corresponding spin vector, obeying S��? ¼
�����S

�
?P

�=M.

(8) ����� denotes the Levi-Civita tensor; we choose

�0123 ¼ �1 (for flat spacetime). We denote

by ~A�U
~B the spatial part of the vector

�����A
�B�U� with respect to a given frame OðuÞ;

and ~A� ~B� ~A�u
~B.

II. EQUATIONS OFMOTION FOR FREE SPINNING
PARTICLES IN FLAT SPACETIME

In a multipole expansion, a body is represented by a set
of moments of T��, called ‘‘inertial’’ or ‘‘gravitational’’
moments (forming the so called [1] ‘‘gravitational skele-
ton’’). The moments are taken about a reference worldline
z�ð�Þ, which will be chosen as a suitably defined center of
mass to be discussed below. Truncating the expansion at
dipole order, the equations of motion involve only two
moments of T�� [10,15,29], the momentum P� and the
angular momentum S��:

P� �
Z
�ð�;uÞ

T��d��; (1)

S�� � 2
Z
�ð�;uÞ

r½�T���d��: (2)

Here P�ð�Þ is the 4-momentum of the body; S��ð�Þ is the
angular momentum about a point z�ð�Þ of the reference
worldline; �ð�; uÞ � �ðzð�Þ; uÞ; r� � x� � z�ð�Þ, where
fx�g is a chart on spacetime; and finally d�� � n�d�,

where n� is the (past-pointing) unit normal to �ð�; uÞ
and d� is the 3-volume element on �ð�; uÞ.
For simplicity, we will consider the background to be

Minkowski spacetime without any further fields. In this
case P�, S�� are independent of �, and the equations of
motion that follow from the conservation law T��

;� ¼ 0

are [5,10,12,15,16,29]:

DP�

d�
¼ 0; (3a)

DS��

d�
¼ 2P½�U��: (3b)

Contracting (3b) with U� we obtain an expression for the
momentum

P� ¼ mU� �DS��

d�
U�; (4)

where m � �P�U�. Equations (3a) and (3b) form an in-
determinate system. Indeed, there are 13 unknowns (P�,
three independent components of U�, and six independent
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components of S��) for only 10 equations.1 To close the
system we need to specify the representative point of the
body (i.e., theworldline of reference relative towhich S�� is
taken). That can be done through a supplementary spin
condition of the type S��u� ¼ 0, where u�ð�Þ is some

appropriately chosen unit timelike vector, which effectively
kills off three components of the angular momentum; this
condition, as we shall see in the next section, means that the
reference worldline is the center of mass as measured in
the rest frameof the observer of velocityu�. HenceU� is the
center of mass 4-velocity and m denotes the proper mass,
i.e., the energy of the body asmeasured in the center of mass
frame.

We note from Eq. (4) that the momentum of a spinning
particle is not, in general, parallel to its 4-velocity; it is said
to possess ‘‘hidden momentum’’ [20,31], which will play a
key role in this discussion.

III. CENTER OF MASS AND THE SIGNIFICANCE
OF THE SPIN SUPPLEMENTARY CONDITION

In relativistic physics, the center of mass of a spinning
particle is observer-dependent. This is illustrated in Fig. 1.

Thus one needs to specify the frame in which the center
of mass is to be evaluated. That can be done through a spin
condition of the type S��u� ¼ 0, as we will show next.

The vector ðduGÞ� � �S��u� yields the ‘‘mass dipole mo-

ment’’ as measured in the rest frame of the observer O
of 4-velocity u�. This is easily seen in this frame, where
ui ¼ 0 and S��u� ¼ S�0u0. Thus, from Eq. (2),

Si0 ¼ 2
Z
�ð�;uÞ

r½iT0��d�� ¼
Z

xiT00d3x�mðuÞzi; (5)

where, as before, r� � x� � z� [note that r0 ¼ 0, since the
integration is performed in the hypersurface �ðuÞ orthogo-
nal to u�], and mðuÞ � �P�u� denotes the mass as mea-
sured in the frame O. The first term of (5) is by definition
mðuÞxiCMðuÞ, where xiCMðuÞ are the coordinates of the cen-
ter of mass as measured by O, and so

xiCMðuÞ � zi ¼ Si0

mðuÞ , x�CMðuÞ � z� ¼ � S��u�
mðuÞ : (6)

Thus we see that the condition S��u� ¼ 0 is precisely the

condition that the reference worldline z�ð�Þ is the center of
mass as measured in this frame. It allows us to write S�� ¼
�����S

�u�, where S�ðuÞ is the spin 4-vector, defined as

being the 4-vector with components ð0; ~SÞ in the rest frame
of O, that is, S� ¼ 1

2 �
�
���u

�S��. In order to see how the

center of mass position changes in a change of observer,

consider now another observer �O moving relative to O
with 4-velocity �u� ¼ �u0ð1; ~vÞ; for this observer the center
of mass will be at a different position, as depicted in Fig. 1.

The ‘‘mass dipole moment’’ as measured by �O is2 ðd �u
GÞ� ¼

�S�� �u�; thus, the center of mass as measured by �O is

displaced by a vector�x� ¼ �S�� �u�=mð �uÞ relative to the
reference worldline z�, where mð �uÞ � �P� �u� denotes the

mass of the particle as measured by �O. Hence we get

�xi ¼ 1

P� �u�
ðSi0 �u0 þ Sij �ujÞ ¼ ð ~S� ~vÞi

P0 � Pivi

; (7)

(recall that, in this frame, Si0 ¼ xiCMðuÞ � zi ¼ 0, since
we chose xiCMðuÞ as the reference worldline). Note that

the coordinates of the 3-vector �xi are the same in the

frame O or �O, since � ~x ? ~v. If u� ¼ P�=M, M �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�P�P�

p
, i.e., if we take as reference worldline the center

of mass x�CMðPÞ as measured in the zero 3-momentum

frame, then:

�xi ¼ ð ~S? � ~vÞi
M

; (8)

FIG. 1 (color online). Center of mass of a free spinning par-

ticle ( ~S ¼ S~ez, orthogonal to the page) as evaluated by two
different observers. Observer O, of 4-velocity u� ¼ P�=M, is
at rest with respect to center of mass xiCM � xiCMðuÞ it measures

(i.e., xiCM is a proper center of mass). Observer �O, moving with

velocity ~v ¼ �v~ey relative to O, sees the points on the right

hemisphere (e.g., point B) moving faster than the points in the
left hemisphere (e.g., point A), and, therefore, for �O, the right
hemisphere will be more massive than the left one. This means
that the center of mass �xiCM � xiCMð �uÞ as evaluated in the moving

frame of �O is shifted to the right (relative to xCM). The shift is

exactly � ~x ¼ ~S? � ~v=M.

1Substituting (4) in (3a) and (3b), we obtain the equations in
Mathisson’s representation [1,12,22,29]; in this case we would
have 10 independent unknowns (m, three independent compo-
nents of U�, and six of S��), for seven independent equations:
four from (3a) and only three from (3b), since contracting the
latter with U� leads to an identity.

2We have shown in discussion above and in Eq. (5) that
ðduGÞ� � �S��u�, with S�� defined integrating in an hypersur-
face �ð�; uÞ orthogonal to u�, yields the mass dipole as mea-
sured by O. Note that it follows from the conservation laws
T��

;� ¼ 0 that the 2-tensor S does not depend on �. Only its
components S�� do, since a choice of � amounts in this case to
choose the frame where S�� are expressed (see, e.g., [30]).
Hence ðd �u

GÞ� ¼ �S�� �u�, with S�� again defined with respect
to �ð�; uÞ, yields indeed the mass dipole measured by �O, only
written in the coordinates of O. But since ~dGð �uÞ ? ~v,
cf. Equation (7), the coordinates ðd �u

GÞ� are actually the same
in the systems of O and �O.
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where we denote by S��? the angular momentum with
respect to x�CMðPÞ, cf. point 7 of Sec. IA. In general one

wants the equations of motion not to depend on quantities
(the center of mass) measured by a particular observer, but
instead a center of mass defined only in terms of properties
‘‘intrinsic’’ to the particle. Two conditions accomplishing
this are frequently found in the literature3: the Mathisson-
Pirani condition

S��U� ¼ 0 (9)

(that is, u� ¼ U�), and the Tulczyjew-Dixon condition
S��P� ¼ 0 (that is, u� ¼ P�=M). The latter amounts to

taking as reference worldline the center of mass as mea-
sured in the frame of zero 3-momentum, Pi ¼ 0; the
former, Eq. (9), comes as the most natural choice, as it
amounts to compute the center of mass in its proper frame,
i.e., in the frame where it has zero 3-velocity. Such center of
mass is dubbed a ‘‘proper center of mass.’’

IV. MATHISSON’S HELICAL SOLUTIONS

Using the Mathisson-Pirani condition (9), implying
S�� ¼ �����S�U�, we can rewrite (4) as

P� ¼ mU� þ S��a� ¼ mU� þ �����a�S
�U�; (10)

where a� ¼ DU�=d�. It follows from Eqs. (3a) and (10)
that the proper mass m ¼ �P�U� is a constant of the
motion: dm=d� ¼ 0. Eq. (3b) can be written as
DS�=d� ¼ a�S

�U�, stating that the spin vector S� is
Fermi-Walker transported along the CM worldline. This
equation, coupled with (10) and (3a), effectively means
that the spin vector is parallel transported

DS�

d�
¼ 0;

since, as can be seen substituting (10) in (3a) and contract-
ing with S�, the spin vector is orthogonal to the accelera-
tion: a�S

� ¼ 0. Noting, from Eq. (10), that P�S� ¼ 0, we
can take, without loss of generality, the constant spin vector
pointing along the z-axis

S� ¼ ð0; 0; 0; SÞ;
in the global Cartesian frame of zero 3-momentum

P� ¼ ðM; 0; 0; 0Þ ¼
�
m

�
; 0; 0; 0

�
:

Here M � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�P�P�

p
denotes the mass/energy of the par-

ticle as measured in this frame, and � � �P�U�=M is a
constant. The equations of motion to be solved are (10).
These require Ut ¼ �, Uz ¼ 0 and

Ux þ �S

m

dUy

d�
¼ 0; Uy � �S

m

dUx

d�
¼ 0: (11)

The general solution for the worldline of reference
describes the famous helical motions, which correspond
to clockwise (i.e., opposite to the spin direction) circular
motions with radius R and speed v on the xy plane; taking
their center as the spatial origin of the frame, they read

z�ð�Þ ¼
�
��;�R cos

�
v�

R
�

�
; R sin

�
v�

R
�

�
; 0

�
; (12)

(where � � proper time, � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
) with

4-velocity and acceleration

U� ¼
�
�; v� sin

�
v�

R
�

�
; v� cos

�
v�

R
�

�
; 0

�
; (13)

a� ¼ v2�2

R

�
0; cos

�
v�

R
�

�
;� sin

�
v�

R
�

�
; 0

�
: (14)

The radius of the trajectory R is

R ¼ v�2S

m
: (15)

All these helical solutions are equivalent descriptions of
the motion of a spinning body, the difference between them
being the representative point they use to describe the
body. Note that (this is true in flat spacetime, and in the
absence of electromagnetic field) the nonhelical solution
R ¼ 0 corresponds to P� k U�, i.e., to the (unique) solu-
tion defined by the Tulczyjew-Dixon condition S��P� ¼
0. The center of the circular motions [i.e., the spatial origin
of the frame in Eq. (12)] is thus the centroid measured in
the zero 3-momentum frame, x�CMðPÞ.
The fact that � in Eq. (15) can be arbitrarily large has led

some authors [4,5,15,28,29] to believe that the same ex-
tended body may be represented by circular trajectories
with any radius. That would be inconsistent with the results
in Sec. V below, with Möller’s treatment in Ref. [6], and
with the results in, e.g., [24]. This is not the case, however;
as we shall now show; indeed the radius is finite (and
confined to the disk of centroids, cf. Figure 2), and the
misunderstanding originates from the fact that keeping the
parameters m and S fixed does not correspond to consid-
ering the same extended body.
In a multipole expansion, an extended body is charac-

terized by its multipole moments. In the pole-dipole
approximation, that amounts to specifying its momentum
P� and its spin tensor S��. These, cf. Equations (1) and (2),
are defined with respect to an hypersurface of integration
� (which is interpreted as the rest space of the observer,
see also Footnote 2), and, in the case of S��, also with
respect to a reference worldline z�. Different representa-
tions of the same extended body must yield the same

3A review (with a comprehensive list of references) on the
literature regarding this subject may be found in [32].
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moments with respect to the same observer and the same
reference worldline. So instead of m ¼ �U�P� (which
depends, via U�, on the particular helix chosen), we must
in fact fix

M ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�P�P
�

p ¼ m

�
: (16)

Similarly, it is not the spin vector S� (nor the spin tensor
S�� obeying S��U� ¼ 0) that we must fix for different

trajectories representing the same extended body. By
choosing the Mathisson-Pirani condition, the tensor S��

showing up in Eqs. (3) is always orthogonal to U�; as
explained in Sec. III, that means that S�� is the angular
momentum evaluated with respect to x�CMðUÞ, i.e., the

center of mass as measured by the observer of
4-velocity U�. Let U� and �U� denote the 4-velocity vec-
tors, Eq. (13), of two different helical representations. The
tensor S��, obeying S��U� ¼ 0, must be, in general,

different from the tensor �S��, obeying �S�� �U� ¼ 0, if

S�� and �S�� are to represent the same body, since the
former is the angular momentum about the point x�CMðUÞ,
and the latter about the point x�CMð �UÞ.

Let S��? denote the spin tensor for the nonhelical trajec-
tory (corresponding to R ¼ 0, � ¼ t, z�ð�Þ ¼ ���

0 and

U� ¼ P�=M),

S��? ¼ 2
Z
�ð�;PÞ

r½�T���d�� (17)

with r� ¼ x� � z�ð�Þ. This corresponds to a spin vector

S�? ¼ ð0; 0; 0; S?Þ; (18)

and so

S��? ¼ �����S
�
?U

� ¼ ���30S? ¼ �0��3S?: (19)

Therefore the nonvanishing components of S��? are S12? ¼
�S21? ¼ S?. The spin tensor for a helical trajectory,

however, is (in the same global Cartesian frame of zero
3-momentum4):

S�� ¼ 2
Z
�ð�;PÞ

�r½�T���d��; (20)

where �r� ¼ x� � �z�ð�Þ, �z�ð�Þ being given by Eq. (12)
with R � 0. Therefore

S�� ¼ S��? � 2�z½�ð�ÞP��: (21)

The condition S��U� ¼ 0 yields

S��? U� þm�z�ð�Þ � �2�P� ¼ 0; (22)

which when written out in components reduces to

mR ¼ v�S?; (23)

and so

S? ¼ �S: (24)

The fixed quantities for a given body are then �S ¼ S?
and m=� ¼ M, not m and S. Accordingly, the same ex-
tended body will be represented by helical trajectories
whose radius R satisfies

R ¼ vS?
M

; (25)

and thus must be smaller than S?=M. The angular fre-
quency of the helices is, from Eqs. (12) and (25),

! ¼ v

R
¼ M

S?
¼ m

�2S
; (26)

which is thus the same for all helical solutions representing
the same extended body. As we shall see in the next
section, this is entirely consistent with Möller’s picture of
the disk, rotating rigidly with frequency !, formed by the
many proper centers of mass.

V. KINEMATICAL EXPLANATION OF THE
HELICAL MOTIONS

In this section we will provide a kinematical explanation
for the helical motions. Although stated and derived in a
different form, it is equivalent to Möller’s treatment in [6],
which does not seem to be well understood in the literature.
The origin of the helical motions is the fact that the

condition S��U� ¼ 0 does not determine the reference

worldline uniquely (i.e., it does not fix completely the
gauge freedom). In other words, there is not a unique

FIG. 2 (color online). Kinematical explanation of the helical
motions allowed by S��U� ¼ 0: every point within a disk of

radius S?=M is a centroid corresponding to some observer;
and it is also a proper center of mass if it rotates with angular
velocity ! ¼ M=S? in the opposite sense of the spinning body
(solid red lines).

4Note that integrating in the hypersurface �ð�; PÞ, orthogonal
to P�, amounts to write S�� in the frame Pi ¼ 0, see Footnote 2.
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answer to the question: which is the center of mass such
that it is at rest relative to the frame where it is evaluated?
In order to see this, consider for simplicity a free particle in
flat spacetime. Clearly, for this case, one of the solutions of
Eqs. (3a) and (3b) supplemented by (9) is straight line
motion, with U� ¼ P�=M constant. LetO be the observer
of 4-velocity u� ¼ P�=M (i.e., its rest frame is the zero
3-momentum frame). The center of mass as measured by
this observer is the point x�CMðPÞ in Fig. 1. This point is at

rest relative to O, so that it is clearly a proper center of

mass. But now let again �O be an observer moving relative

to O with 3-velocity ~v. The 4-velocity of �O is �u� ¼
�ðu� þ v�Þ, where � � �u� �u

� and v� is the relative
velocity vector which is spatial with respect to u�.

Observer �O measures the center of mass x�CMð �uÞ (i.e., its
centroid) to be at a different position, as shown by Eq. (8);
and in general that point will not be a proper center of

mass, since it will be moving relative to �O. Choosing
x�CMðPÞ as our reference worldline (z� ¼ x�CMðPÞ), let �P
be the proper time along it. The relative position �x� ¼
x�CMð �uÞ � x�CMðPÞ is the spatial (with respect to u�)

vector �x�¼S��? �u�=P
�u�¼�S��? v�=M. Noting, from

Eqs. (3a) and (3b), that DS��? =d�P ¼ 0, it evolves along
z�ð�PÞ as

D�x�

d�P
¼ � S��?

M

Dv�

d�P
, d ~�x

dt
¼

~S? � ~ac
M

: (27)

The second equation holds in the rest frame of O (the
frame ui ¼ 0 ¼ Pi), where the time coordinate is t ¼ �P,
and ~ac � d ~v=dt denotes the coordinate acceleration of

observer �O in the frame of O. Note that it can be directly
obtained from (8) by simply differentiating with respect to
the coordinate t. Thus we see that if v� is parallel trans-
ported along z�ð�PÞ, which in flat spacetime is ensured by

taking �O inertial, then D�x�=d�P ¼ 0, implying that
x�CMð �uÞ is fixed relative to x�CMðPÞ; and thus moves relative

to �O at a speed � ~v. The set of centroids measured by all
the possible inertial observers forms a disk of points all at
restwith respect to each other and (again, for a free particle
in flat spacetime) with respect to x�CMðPÞ, around which the
disk is centered. However if we consider �O to be accel-
erating, then the velocity ~vCMð �uÞ ¼ d� ~x=dt of the centroid
he measures changes in a nontrivial way, as shown by

Eqs. (27). Now if we take the case that �O itself also moves
with 3-velocity

~v ¼
~S? � ~ac
M

� 1

M

�
~S? � d ~v

dt

�
; (28)

then x�CMð �uÞ is at rest relative to �O, i.e., it is a proper center

of mass. Equation (28) is equivalent to Eqs. (11), its
solutions being circular motions in the plane orthogonal

to ~S?, with radius R ¼ �x ¼ j ~v� ~S?j=M, and angular

velocity ~! ¼ �M ~S?=S
2
?. Note that the angular velocity

is constant (does not depend on R) and is in opposite sense
to the rotation of the body. Hence the set of all possible
proper centers of mass fills a disk of radius�xmax ¼ S?=M
(i.e., of the same size of the disk of centroids) in the plane

orthogonal to ~S?, counter-rotating rigidly with angular
velocity ~!. In other words: from Eq. (8) we see that the
possible centroids measured by the different observers fill a
disk of radius Rmax ¼ S?=M about the point x�CMðPÞ; every
point of such disk could also be a proper center of mass,
provided that it rotates with angular velocity ~!. This is
the result found by Möller [6]. In a frame where Pi � 0
(i.e., moving relative toO) this leads to helical motions, as
depicted in Fig. 2, which are precisely the ones explicitly
derived in the previous section. We emphasize that the
angular velocity ~! of the disk of proper centers of mass
is not the same as the angular velocity the body; indeed it is
opposite to the sense of rotation of the body; and note also
that the points of the circle Rmax ¼ S?=M move at the
speed of light.
Finally, it is clear, from the analysis above, that all the

helical solutions are contained within a tube of radius
Rmax ¼ S?=M, which is actually the minimum size a clas-
sical spinning particle can have if it is to have finite S? and
positive mass without violating the laws of special relativ-
ity (see also [6,33]) .

VI. DYNAMICAL INTERPRETATION OF THE
HELICAL MOTIONS

The concept of hidden momentum is central to the
understanding of dynamics of the helical solutions;
namely, it explains how the motion of a free spinning
particle can be consistently described by helical solutions
without violating any conservation principle, and that they
are a phenomenon which can be cast as analogous to the
bobbing of a magnetic dipole in an external electric field
studied in [20]. As we have seen in the previous sections,
for a free spinning particle in flat spacetime, Eqs. (3a) and
(3b), supplemented with (9), yield, as possible solutions,
straight line motion plus a set of helical motions contained
within a tube of radius S?=M. This seems odd at first
glance: how can a solution where the center of mass of
the particle is accelerating without any external force be
physically acceptable? The answer is that the acceleration
results from an interchange between kinetic momentum
mU� and hidden momentum S��a� (we dub it ‘‘inertial’’

hidden momentum, the reason for such denomination
being explained below) which occurs in a way such that
their variations cancel out at every instant, keeping the total
momentum constant, as illustrated in Fig. 3. That is what
we are going to show next. Consider a generic spin condi-
tion S��u� ¼ 0, where u� denotes the 4-velocity of an

arbitrary observer OðuÞ. As discussed in Sec. III, this
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condition means that we take as reference worldline
the center of mass as measured by OðuÞ. Contracting
(3b) with u�, and using S��u� ¼ 0 ) u�DS��=d� ¼
�S��Du�=d�, leads to

S��
Du�
d�

¼ �ðu;UÞP� �mðuÞU�; (29)

where �ðu;UÞ � �U�u� and mðuÞ � �P�u�. Hence, if

Du�=d� � 0, then in general the momentum is not parallel

to the 4-velocity: P½�U�� � 0, and the particle is said to
have hidden momentum [20]. The momentum of the parti-
cle may be split in its projections parallel and orthogonal to
the CM 4-velocity U�:

P�¼P�
kinþP�

hid; P�
kin�mU�; P�

hid�ðhUÞ��P
�; (30)

where ðhUÞ�� � U�U� þ ��
� denotes the space projector

with respect to U�. We dub the time projection P�
kin ¼

mU� ‘‘kinetic momentum’’ associated with the motion of
the centroid; and the component P�

hid orthogonal to U� is

what we dub ‘‘hidden momentum.’’ The reason for the
latter denomination is easily seen taking the perspective
of an observer OðUÞ comoving with the particle: in the
frame ofOðUÞ (i.e., the frame Ui ¼ 0) the 3-momentum is

in general not zero: ~P ¼ ~Phid � 0; however, by definition,
the particle’s CM is at rest in that frame; such momentum
must thus be hidden somehow.

Now, if Du�=d� ¼ 0, that is, if we take as reference

worldline the center of mass as measured by an observer
OðuÞ such that u� is parallel transported along it, then
from Eq. (29) we have P� k U�, and there is no hidden
momentum. This is actually cast in [24] as one of the
possible spin supplementary conditions. Thus indeed this
form of hidden momentum is pure gauge; it also means that
the motion effects induced by it (such as the bobbings
studied in [20]) must be confined to the worldtube of
centroids, so that they can be made to vanish by a suitable
choice of reference worldline. For this reason it is dubbed

in [20] ‘‘kinematical hidden momentum’’ (by contrast with
gauge-invariant hidden momentum present in electromag-
netic systems, dubbed ‘‘dynamic’’ therein). In flat space-
time, we can say that if the observer is inertial (which
implies that its 4-velocity is parallel transported along the
particle’s worldline), then there is no hidden momentum.
(The ‘‘laboratory’’ observer considered in p. 9 of [20], for
the case of flat spacetime, is an example of an inertial
observer, more precisely the static observer with u� tan-
gent to the time Killing vector).
This hidden momentum is, of course, related to the

relativity of the center of mass (its shift in different frames,
discussed in Sec. III), and taking this perspective makes
quite clear why U� decouples from P� if Du�=d� � 0,
and the hidden momentum arises. But first let us make
some remarks:
Remark.—Whereas in the previous sections we dealt

essentially with flat spacetime, Eq. (29) above is general.
In the previous sections we illustrated the nonuniqueness
of the center of mass by its relativity with respect to what
we called ‘‘observers’’ and/or ‘‘frames,’’ and that their
‘‘acceleration’’ was the underlying reason behind the non-
trivial velocity the centroid has in some cases. But what we
are implicitly doing (and what actually holds in a more
general formulation e.g., [15,16,20,31]), is to assume a
continuous field of timelike unit vectors u� along z�ð�Þ;
at each event, u� provides the hypersurface �ðu; �Þ over
which the integrals defining the moments P�, S�� (as well
as the center of mass) are performed. �ðu; �Þ is generically
defined as the hypersurface formed by all geodesics or-
thogonal to u� at the point z�ð�Þ. Thus in this construction,
the vectors u� (which we can always think about as the
instantaneous 4-velocity of some local observer) are all
that matter; the concept of an observer OðuÞ, in the tradi-
tional sense of a worldline to which u� is tangent, has no
place; except for the case u� ¼ U� � dz�=d�, there is no
worldline tangent to the field u� (and therefore no accel-
eration is defined for it). The field u� only has to exist
along the reference worldline, and Du�=d� is the only
derivative defined for it. In the special case of flat space-
time (but not in general curved spacetime!), where vectors
at different points can be compared, we can indeed think of
the field u� as the tangent to the worldline of some distant
(as such worldline in general will not coincide with z�)
observer, and Dv�=d� as its coordinate acceleration with
respect to the CM frame Ui ¼ 0. This is what was implic-
itly done in Sec. V.
As we have seen in Sec. III, the position of the centroid

of a spinning body depends on the vector u� relative to
which it is computed. If that vector varies along the refer-
ence worldline it is clear that this is reflected in the velocity
U� of the centroid, which in general will accelerate even
without the action of any force. Also U� will in general no

longer be parallel to P�, i.e., ~U � 0, and thus the centroid
is not at rest in the frame Pi ¼ 0. Let us show explicitly

FIG. 3 (color online). Hidden momentum provides dynamical
interpretation for the helical motions (left panel): the acceleration
results from an interchange between kinetic P�

kin ¼ mU� and

hidden ‘‘inertial’’ momentum P�
hid ¼ S��a�, which occurs in a

way that their variations cancel out at every instant, keeping the
totalmomentumconstant. This ismademanifest in the right panel,

representing the ~P ¼ 0 frame, wherein ~Phid¼ ~a�U
~S¼�m ~U¼

� ~Pkin. The description is formally analogous to the bobbing [20]
of a magnetic dipole orbiting a cylindrical charge.
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that the decoupling of U� from P�, manifest in Eq. (29),
indeed comes from the shift of the centroid, given in
Eq. (6). As we have seen in Sec. III, if we choose the
reference line to be the center of momentum centroid, z� ¼
x�CMðPÞ, then the shift of the centroid measured by the

observer u� is �x� ¼ �S��? u�=mðuÞ, with mðuÞ �
�P�u�. Therefore

D�x�

d�
¼ � S��?

mðuÞ
Du�
d�

þ dmðuÞ
d�

S��? u�

mðuÞ2 ; (31)

as by (3), DS��? =d� ¼ 0. By (21) we know that the spin
tensor S�� computed by u� satisfies

S�� ¼ S��? � �x�P� þ P��x�: (32)

Substituting in (31), using S��u� ¼ 0 and �x�u� ¼ 0, we

obtain

mðuÞD�x�

d�
¼ �S��

Du�
d�

��x�P�
Du�
d�

� P� D�x�

d�
u�

� dmðuÞ
d�

�x�;

or, noticing that dmðuÞ=d� ¼ �P�Du�=d�, we have

mðuÞD�x�

d�
¼ �S��

Du�
d�

� P� D�x�

d�
u�: (33)

In flat spacetime and Cartesian coordinates, we may al-
ways write

U�¼dx�CMðuÞ
d�

¼dx�CMðPÞ
d�

þd�x�

d�
¼fP�þD�x�

d�
; (34)

where f is a function to be determined. Since �x�P� ¼ 0
and DP�=d� ¼ 0, it follows that P�D�x�=d� ¼ 0; thus
contracting (34) with P� we obtain f ¼ m=M2. Finally,
substituting Eq. (34) for D�x�=d� in (33), we obtain (29)
exactly.

Hence we have different, and equivalent, descriptions
for the same motion (of a free particle in flat spacetime).
The most simple ones are the centroids measured by
every possible inertial observers, whose trajectories are
straight lines parallel to each other, and to P�. In the
frame Pi ¼ 0, all these centroids are at rest. But if we
take the centroid with respect to an u� not constant along
the curve, which, as discussed above, may be thought as
the point of view of some accelerated observer OðuÞ, then
the centroid will have in general a different velocity, and
also accelerate, see Eqs. (27). However P� is always the
same (it does not depend on the choice of centroid)! This
makes evident the role of P�

hid in a consistent dynamical

description: when one describes the body through the
centroid measured by an accelerated observer, there

must be a hidden momentum ~Phid that cancels out the

kinetic momentum ~Pkin ¼ m ~U the moving centroid
x�CMðuÞ has in the frame Pi ¼ 0.
If the observer’s acceleration itself changes in a

way such that the signal in Eqs. (27) oscillates, we may
have a bobbing; or if it is such thatOðuÞ sees its centroid to
be at rest (i.e., if OðuÞ moves with 3-velocity (28) in the
frame Pi ¼ 0), then we have a helical solution. In this case
(u� ¼ U�), decomposition (30) takes a simple form,
cf. Equation (10):

P�
kin¼mU�; P�

hid¼S��a�¼�����a�S
�U�; (35)

which in the frame Ui ¼ 0 reads ~P ¼ ~Phid ¼ ~a� ~S.

Since ~G ¼ � ~a is the ‘‘gravitoelectric’’ field [34,35] as
measured in that frame (which is a field of ‘‘inertial

forces’’), ~Phid is cast in [31] as the inertial analogue of

the hidden momentum ~�� ~E of electromagnetic systems
(see, e.g., [20,36]), and its origin explained therein by an
analogous model. In this spirit, the dynamics of the
helical representations may be cast as analogous to the
bobbing of a magnetic dipole orbiting a cylindrical
charge, discussed in Sec. III.B.1 of [20]. Let the line

charge be along the z axis, and ~E the electric field it
produces; and consider an oppositely charged test parti-
cle, with magnetic dipole moment ~� ¼ ð�x;�y; 0Þ, orbit-
ing it. The z component of the force vanishes for this
setup; hence Pz ¼ 0 ¼ constant. But the particle will
possess a hidden momentum, which for slow motion

[20] reads ~Phid ¼ ~�� ~E; as it orbits the line charge,
~Phid oscillates between positive and negative values along
the z-axis, implying the particle to bob up and down in
order to keep the total momentum along z constant: Pz ¼
Pz
kin þ Pz

hid ¼ 0. Thus, just like in the case of the helical

motions, the bobbing arises not through the action of a

force, but from an interchange between kinetic ~Pkin ¼
m ~U and hidden momentum. The difference being that the

hidden momentum ~S� ~a is pure gauge (which indeed
allows a helical solution to be a consistent description of
the motion even in the case of a free particle in flat
spacetime, but can always be made to vanish by choosing
the nonhelical representation), whereas, by contrast, the
electromagnetic effect mentioned above is physical and
gauge-independent.
Hence again we see that the straight line and helical

solutions are alternative and physically consistent descrip-
tions of the motion of a free spinning body: in the first
case, we have no acceleration and no hidden momentum;
in the second case we have a helix, but also inertial hidden
momentum.
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VII. CONCLUSION. MISCONCEPTIONS
ABOUT THE HELICAL SOLUTIONS AND

QUANTUM ZITTERBEWEGUNG

Mathisson’s helical solutions have been deemed un-
physical in a number of treatments, e.g., [15,28], due to
the wrong idea that Eq. (15), which is equivalent to
Eq. (25), allows the helical motions of (the representative
point of) a given particle to have an arbitrarily large radius
[4,5,15,28,29]. This would also imply that these solutions
were not equivalent to the ones derived in Sec. V, and
found in Möller’s treatment [6]. As we have seen, this is
just a misconception, based on the failure to notice that in
order to have a set of helical solutions representing the
same physical body, we must fix �S ¼ S? and m=� ¼ M,
not m and S; i.e., we must require that, regardless of the
different possible representations, it has the same moments
as measured with respect to the same observer and refer-
ence worldline.

There is nothing unphysical with Mathisson’s helical
solutions; they are all perfectly valid and equivalent
descriptions of the motion of a classical spinning body.
The helices are, as we have seen, all contained within a
worldtube of radius Rmax ¼ S?=M centered at x�ðPÞ (i.e.,
the center of mass as measured in the zero 3-momentum
frame). And that should be a natural result from the
analysis in Sec. III: the radius of a helical motion of
4-velocity U� corresponds to the displacement of the
center of mass measured in the frame Ui ¼ 0 relative
to x�ðPÞ; the maximum shift is �xmax ¼ S?=M, corre-
sponding to the case that the relative velocity between
the two observers is the speed of light. Now one also has
to note that Rmax ¼ S?=M is also the minimum size that a
classical spinning particle can have if it is to have finite
S? and positive mass without violating special relativity
(i.e., without containing points moving faster than the
speed of light; see also [6,33]). This means that not only
R is not arbitrarily large, but also it can never exceed the
minimum size of the particle; i.e., the helical trajectories
always fall within the convex hull of the body.
Furthermore, they have a clear kinematical explanation
as shown in Sec. V; and their dynamics may be inter-
preted in analogy with the hidden momentum of electro-
magnetic systems [31].

The helical solutions were interpreted by some authors
[8,9,12,21,23] as the classical limit of the quantum zitter-
bewegung, due to the similarity between the zitterbewe-
gung frequency of the Dirac equation for the electron and
the frequency of the corresponding classical helical mo-
tions. Indeed, indentifying S? ¼ ℏ=2 and M ¼ Me, we
obtain from Eq. (26) that all classical helical representa-
tions for the free electron have the frequency ! ¼
2Me=ℏ, which is precisely Dirac’s zitterbewegung fre-
quency (this extends Mathisson’s observation in [21] to
the relativistic limit). Other authors [4,5,15,28] have re-
jected this correspondence, based on two arguments:

1) that Mathisson’s helical solutions for the electron
might have arbitrarily large radius which would make
them macroscopically measurable [4,5,15,28]; 2) that
the coincidence between the frequencies holds only in
the nonrelativistic limit [4,5], based on the expression
(26) in the form ! ¼ m=�2S, and identifying instead
m ¼ Me, S ¼ ℏ=2. That is, repeating the same misunder-
standing that led to the arbitrary radius, it would imply
that different helical solutions corresponding to the
electron would have different frequencies, which would
only match Dirac’s frequency in the nonrelativistic
limit � � 1. A deeper analysis of this problem will be
presented elsewhere. Herein we would just like to point
out that, as made clear by the analysis above, both
arguments put forward against this correspondence
between classical and quantum solutions arise from
misconceptions.
Finally, an aspect that has drawn skepticism (see,

e.g., [11,20]) into the equations of motion supplemented
with the Mathisson-Pirani condition, Eqs. (3) and (10), is
the fact that they are of third order in time, meaning that,
in order for the motion to be determined,5 not only one
must prescribe the initial position and velocity (for known
m and S�), but also the initial acceleration. This might
seem odd as in Newtonian mechanics (where the center of
mass is an invariant) the motion of the CM of an extended
body is fully determined by the force laws given its initial
position and velocity. But in relativity that is only true for a
monopole particle; for a general extended (spinning) body,
due to the relativity of the center of mass, in addition to
those two initial conditions, one needs also to determine
the field of unit timelike vectors u� relative to which the
CM is computed. It is important to note that, as explained
in Sec. VI, the acceleration of the CM does not originate
solely from the force, but also from the variation of
the field u� along the CM worldline (leading to the
hidden momentum). Some spin conditions, such as
the Tulczyjew-Dixon [13,15,16] or the Corinaldesi-
Papapetrou [38] conditions, fully fix the reference world-
line and the vector field u� along it; the Mathisson-Pirani
condition, as explained in Sec. V, does not, and the higher
order of the equations merely reflects that incompleteness
of gauge fixing.

5It has been recently pointed out [37] that Eqs. (3) and (9)
uniquely determine the solution if one prescribes, as initial
conditions, fS��; x�CMðUÞ; P�g. This does not clash with the
statements above, and is indeed correct: knowing P� and S��,
we immediately determine the shift �x� ¼ x�CMðUÞ � x�CMðPÞ
from the expression �x� ¼ S��P�=M

2; since x�CMðUÞ is given,
then we know also x�CMðPÞ. S��? follows using (32). This tells us
everything about the motion: it is a superposition of a circular
motion of radius R ¼ �x, centered at x�CMðPÞ, and of angular
velocity ~! ¼ �M ~S?=S

2
?, with a boost of 4-velocity P�=M. The

set of initial data fS��; x�CMðUÞ; P�g is thus equivalent to
fm; S��; x�CMðUÞ; U�; a�g.
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Why does it matter?—In addition to the physical clari-
fication of the helical motions, an important point made
in this work is to prove the physical validity of the
Mathisson-Pirani condition. We have shown it is as valid
as any other of the infinite number of possible spin
conditions. Indeed, a condition of the type S��u� ¼ 0,

for some unit timelike vector u�, amounts to choosing as
the representative point of the body the center of mass as
measured by some observer of 4-velocity u�. But u� is
arbitrary; whether it is itself the 4-velocity of the
center of mass U� (Mathisson-Pirani condition), or it is
parallel to P� (Tulczyjew-Dixon condition [13,15,16]),
or it corresponds to the static observers in Schwarzschild
spacetime (Papapetrou-Corinaldesi condition [38]),
or any other type of observers (there is an infinite
number of possibilities), the choice should be based on
convenience.6 So the question might be posed, why
worry about Mathisson-Pirani’s condition, which leads
to degenerate solutions, while the Tulczyjew-Dixon con-
dition yields a unique definition of CM? The point is that
there are also situations where it is the Mathisson-Pirani
condition that gives the simplest and more enlightening
solution. For a free particle in flat spacetime, indeed the
Tulczyjew-Dixon condition S��P� ¼ 0 provides the

simplest description for the center of mass motion,
which is uniform straight line motion (and coincides in
this special case with Mathisson’s nonhelical solution),
whereas the Mathisson-Pirani condition includes also the
helical solutions, which are more complicated descrip-
tions. However in the presence of gravitational and
electromagnetic fields, the Tulczyjew-Dixon solution
no longer coincides with any of Mathisson’s solutions,7

and it turns out, as exemplified in several applications in
[31], that in some more complex setups it is the
Mathisson-Pirani condition that provides the simplest
and clearest description. This condition arises also in a
natural fashion in a number of treatments [14,19] (see
also [25]); for massless particles, it has been argued in
[39,40] that it is actually the only one that can be

applied. And for the case of the equation for the spin
evolution (3b), it is always the Mathisson-Pirani condi-
tion that yields the simplest and physically more sound
description: in the absence of electromagnetic field
(or other external torques), S� is Fermi-Walker trans-
ported; i.e., the gyroscope’s axis is fixed relative to a
nonrotating frame, which is the natural, expected result.
The Tulczyjew-Dixon condition yields a different
equation (see Eq. (7.11) of [16]), meaning that S� under-
goes transport orthogonal to P� (dubbed therein
‘‘M-transport’’). There is no conflict because the trans-
port is along a different worldline. But the equation for
the evolution of S� puts a strong emphasis on the rele-
vance of acknowledging the physical validity of the
Mathisson-Pirani condition, which has to do with the
deepest notions of inertia and rotation in general
relativity: a Fermi-Walker transported frame is by defi-
nition a frame that does not rotate relative to the local
spacetime (i.e., to the ‘‘local compass of inertia’’, as
described in some literature, e.g., [41]); in order for
this law to be more than a mere mathematical abstrac-
tion, and for the rotation to be something absolute and
locally measurable, this has to have a correspondence to
a physical object, which is the torque-free gyroscope
(gyroscopes are objects that oppose to changes in direc-
tion of their axis of rotation!). In a gravitational field, a
spinning particle which has only pole-dipole moments
(no quadrupole or higher moments) is the idealization
corresponding to the torque-free gyroscope. Only if the
Mathisson-Pirani condition holds is it Fermi-Walker
transported. Hence, deeming the Mathisson-Pirani con-
dition as physically unacceptable (as many authors do),
amounts to saying that the whole concept of Fermi-
Walker transport makes no sense from the physical point
of view (or is at best an approximation).
Finally, probably one of the most interesting features

of the Mathisson-Pirani condition is the fact that it
makes explicit two exact gravito-electromagnetic anal-
ogies: the tidal tensor analogy relating the gravitational
force on a spinning particle with the electromagnetic
force exerted on a magnetic dipole, discussed in
[31,42], and the analogy based on the ‘‘gravitoelectro-
magnetic fields’’ from the 1þ 3 formalism discussed in,
e.g., [31,34,35], the latter with the following realiza-
tions: one again relating the two forces [35], other
relating the evolution of the spin of a gyroscope with
the precession of a magnetic dipole under the action of a
magnetic field [31,34,35], and a third one relating the
hidden inertial momentum with the hidden momentum
of electromagnetic systems [31]. These analogies pro-
vide valuable insight, and a familiar formalism to treat
otherwise exotic gravitational effects, as well as a means
to contrast them with their electromagnetic counterparts.
Such comparison allows one to notice some fundamental
aspects of both interactions, as explained in detail in
[31].

6In thisworkwedealtwith free particles in flat spacetime,where
it was clear that all the centroids (including those corresponding to
the helical motions) remain inside the worldtube of radius S?=M
forever. However, in the presence of strongly inhomogeneous
external fields, the point we chose to represent the particle makes
a difference. The trajectories are seen to diverge (outside any such
worldtube) in [24] for a Kerr background. This actually signals the
breakdown of the pole-dipole approximations (not that the spin
conditions are not pure gauge after all!). The approximation is
only acceptable when the choice of centroid (and the spin condi-
tion) does not matter; i.e., when the scale of variation of the
external field is much larger than S?=M, cf. [24].

7When an electromagnetic and/or gravitational field (or any
other external force) is present, x�CMðPÞ is not, in general, a proper
center of mass; i.e., the 4-velocity of the centroid defined by
S��P� ¼ 0 is not parallel to P�; that can be seen from, e.g.,
Eq. (35) of [20] (see also discussion in [31]). In other words, the
centroid measured in the Pi ¼ 0 frame is not at rest in that frame.
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[35] José Natário, Gen. Relativ. Gravit. 39, 1477 (2007).
[36] Lev Vaidman, Am. J. Phys. 58, 978 (1990).
[37] N. Kudryashova and Yu.N. Obukhov, Phys. Lett. A 374,

3801 (2010); Yu. N. Obukhov and D. Puetzfeld, Phys. Rev.
D 83, 044024 (2011).

[38] E. Corinaldesi and A. Papapetrou, Proc. R. Soc. A 209,
259 (1951).

[39] M. Bailyn and S. Ragusa, Phys. Rev. D 15, 3543
(1977).

[40] M. Bailyn and S. Ragusa, Phys. Rev. D 23, 1258
(1981).

[41] I. Ciufolini and J. A. Wheeler, Gravitation and Inertia,
Princeton Series in Physics (Princeton University,
Princeton, NJ, 1995).

[42] L. F. Costa and C.A. R. Herdeiro, Phys. Rev. D 78, 024021
(2008).

MATHISSON’s HELICAL MOTIONS FOR A SPINNING . . . PHYSICAL REVIEW D 85, 024001 (2012)

024001-11

http://dx.doi.org/10.1007/s10714-010-0939-y
http://dx.doi.org/10.1007/s10714-010-0939-y
http://dx.doi.org/10.1007/BF01397099
http://dx.doi.org/10.1038/117653a0
http://dx.doi.org/10.1038/117653a0
http://dx.doi.org/10.1070/PU1980v023n10ABEH005040
http://dx.doi.org/10.1070/PU1980v023n10ABEH005040
http://dx.doi.org/10.1038/157766b0
http://dx.doi.org/10.1098/rspa.1941.0056
http://dx.doi.org/10.1098/rspa.1941.0056
http://dx.doi.org/10.1103/PhysRev.121.1833
http://dx.doi.org/10.1063/1.1705397
http://dx.doi.org/10.1103/PhysRevD.80.024031
http://dx.doi.org/10.1103/PhysRevD.80.024031
http://dx.doi.org/10.1098/rspa.1951.0200
http://dx.doi.org/10.1063/1.1704055
http://dx.doi.org/10.1007/BF02734579
http://dx.doi.org/10.1098/rspa.1970.0020
http://dx.doi.org/10.1007/s00220-008-0475-8
http://dx.doi.org/10.1103/PhysRevD.81.104012
http://dx.doi.org/10.1103/PhysRevD.81.104012
http://dx.doi.org/10.1103/PhysRevD.30.2683
http://dx.doi.org/10.1111/j.1365-2966.2007.12502.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12502.x
http://dx.doi.org/10.1088/0264-9381/28/19/195025
http://dx.doi.org/10.1007/BF02750084
http://dx.doi.org/10.1046/j.1365-8711.1999.02754.x
http://dx.doi.org/10.1016/0003-4916(92)90297-Y
http://dx.doi.org/10.1016/0003-4916(92)90297-Y
http://dx.doi.org/10.1007/s10714-007-0474-7
http://dx.doi.org/10.1119/1.16260
http://dx.doi.org/10.1016/j.physleta.2010.07.046
http://dx.doi.org/10.1016/j.physleta.2010.07.046
http://dx.doi.org/10.1103/PhysRevD.83.044024
http://dx.doi.org/10.1103/PhysRevD.83.044024
http://dx.doi.org/10.1098/rspa.1951.0201
http://dx.doi.org/10.1098/rspa.1951.0201
http://dx.doi.org/10.1103/PhysRevD.15.3543
http://dx.doi.org/10.1103/PhysRevD.15.3543
http://dx.doi.org/10.1103/PhysRevD.23.1258
http://dx.doi.org/10.1103/PhysRevD.23.1258
http://dx.doi.org/10.1103/PhysRevD.78.024021
http://dx.doi.org/10.1103/PhysRevD.78.024021

