7,132 research outputs found

    Splitting Sensitivity of the Ground and 7.6 eV Isomeric States of 229Th

    Full text link
    The lowest-known excited state in nuclei is the 7.6 eV isomer of 229Th. This energy is within the range of laser-based investigations that could allow accurate measurements of possible temporal variation of this energy splitting. This in turn could probe temporal variation of the fine-structure constant or other parameters in the nuclear Hamiltonian. We investigate the sensitivity of this transition energy to these quantities. We find that the two states are predicted to have identical deformations and thus the same Coulomb energies within the accuracy of the model (viz., within roughly 30 keV). We therefore find no enhanced sensitivity to variation of the fine-structure constant. In the case of the strong interaction the energy splitting is found to have a complicated dependence on several parameters of the interaction, which makes an accurate prediction of sensitivity to temporal changes of fundamental constants problematical. Neither the strong- nor Coulomb-interaction contributions to the energy splitting of this doublet can be constrained within an accuracy better than a few tens of keV, so that only upper limits can be set on the possible sensitivity to temporal variations of the fundamental constants.Comment: 4 pages, 2 figure

    Scalar field theory on kappa-Minkowski spacetime and translation and Lorentz invariance

    Full text link
    We investigate the properties of kappa-Minkowski spacetime by using representations of the corresponding deformed algebra in terms of undeformed Heisenberg-Weyl algebra. The deformed algebra consists of kappa-Poincare algebra extended with the generators of the deformed Weyl algebra. The part of deformed algebra, generated by rotation, boost and momentum generators, is described by the Hopf algebra structure. The approach used in our considerations is completely Lorentz covariant. We further use an adventages of this approach to consistently construct a star product which has a property that under integration sign it can be replaced by a standard pointwise multiplication, a property that was since known to hold for Moyal, but not also for kappa-Minkowski spacetime. This star product also has generalized trace and cyclic properties and the construction alone is accomplished by considering a classical Dirac operator representation of deformed algebra and by requiring it to be hermitian. We find that the obtained star product is not translationally invariant, leading to a conclusion that the classical Dirac operator representation is the one where translation invariance cannot simultaneously be implemented along with hermiticity. However, due to the integral property satisfied by the star product, noncommutative free scalar field theory does not have a problem with translation symmetry breaking and can be shown to reduce to an ordinary free scalar field theory without nonlocal features and tachionic modes and basicaly of the very same form. The issue of Lorentz invariance of the theory is also discussed.Comment: 22 pages, no figures, revtex4, in new version comments regarding translation invariance and few references are added, accepted for publication in Int. J. Mod. Phys.

    The Sightline to Q2343-BX415: Clues to Galaxy Formation in a Quasar Environment

    Get PDF
    (Abridged) We have discovered a strong DLA coincident in redshift with the faint QSO Q2343-BX415 (R = 20.2, z_em = 2.57393). Follow-up observations at intermediate spectral resolution reveal that the metal lines associated with this 'proximate' DLA consist of two sets of absorption components. One set is moving towards the quasar with velocities of ~ 150-600 km/s; this gas is highly ionized and does not fully cover the continuum source, suggesting that it is physically close to the active nucleus. The other, which accounts for most of the neutral gas, is blueshifted relative to the QSO, with the strongest component at ~ -160 km/s. We consider the possibility that the PDLA arises in the outflowing interstellar medium of the host galaxy of Q2343-BX415, an interpretation supported by strong C IV and N V absorption at nearby velocities, and by the intense radiation field longward of the Lyman limit implied by the high C II*/H I ratio. If Q2343-BX415 is the main source of these UV photons, then the PDLA is located at either ~ 8 or ~ 37 kpc from the active nucleus. Alternatively, the absorber may be a foreground star-forming galaxy unrelated to the quasar and coincidentally at the same redshift, but our deep imaging and follow-up spectroscopy of the field of Q2343-BX415 has not yet produced a likely candidate. We measure the abundances of 14 elements in the PDLA, finding an overall metallicity of ~ 1/5 solar and a normal pattern of relative element abundances for this metallicity. Thus, in this PDLA there is no evidence for the super-solar metallicities that have been claimed for some proximate, high ionization, systems.Comment: Accepted for publication in the Astrophysical Journal. 27 pages, 8 tables, 21 postscript figure

    Energy Momentum Pseudo-Tensor of Relic Gravitational Wave in Expanding Universe

    Full text link
    We study the energy-momentum pseudo-tensor of gravitational wave, and examine the one introduced by Landau-Lifshitz for a general gravitational field and the effective one recently used in literature. In short wavelength limit after Brill-Hartle average, both lead to the same gauge invariant stress tensor of gravitational wave. For relic gravitational waves in the expanding universe, we examine two forms of pressure, pgwp_{gw} and Pgw\mathcal{P}_{gw}, and trace the origin of their difference to a coupling between gravitational waves and the background matter. The difference is shown to be negligibly small for most of cosmic expansion stages starting from inflation. We demonstrate that the wave equation is equivalent to the energy conservation equation using the pressure Pgw\mathcal{P}_{gw} that includes the mentioned coupling.Comment: 15 pages, no figure, Accepted by PR

    Saturation properties and incompressibility of nuclear matter: A consistent determination from nuclear masses

    Get PDF
    Starting with a two-body effective nucleon-nucleon interaction, it is shown that the infinite nuclear matter model of atomic nuclei is more appropriate than the conventional Bethe-Weizsacker like mass formulae to extract saturation properties of nuclear matter from nuclear masses. In particular, the saturation density thus obtained agrees with that of electron scattering data and the Hartree-Fock calculations. For the first time using nuclear mass formula, the radius constant r0r_0=1.138 fm and binding energy per nucleon ava_v = -16.11 MeV, corresponding to the infinite nuclear matter, are consistently obtained from the same source. An important offshoot of this study is the determination of nuclear matter incompressibility KK_{\infty} to be 288±\pm 28 MeV using the same source of nuclear masses as input.Comment: 14 latex pages, five figures available on request ( to appear in Phy. Rev. C

    Variational determination of multi-qubit geometrical entanglement in NISQ computers

    Full text link
    Current noise levels in physical realizations of qubits and quantum operations limit the applicability of conventional methods to characterize entanglement. In this adverse scenario, we follow a quantum variational approach to estimate the geometric measure of entanglement of multiqubit pure states. The algorithm requires only single-qubit gates and measurements, so it is well suited for NISQ devices. This is demonstrated by successfully implementing the method on IBM Quantum devices for Greenberger-Horne-Zeilinger states of 33, 44, and 55 qubits. Numerical simulations with random states show the robustness and accuracy of the method. The scalability of the protocol is numerically demonstrated via matrix product states techniques up to 2525 qubits

    NICMOS Snapshot Survey of Damped Lyman Alpha Quasars

    Get PDF
    We image 19 quasars with 22 damped Lyman alpha (DLA) systems using the F160W filter and the Near-Infrared Camera and Multiobject Spectrograph aboard the Hubble Space Telescope, in both direct and coronagraphic modes. We reach 5 sigma detection limits of ~H=22 in the majority of our images. We compare our observations to the observed Lyman-break population of high-redshift galaxies, as well as Bruzual & Charlot evolutionary models of present-day galaxies redshifted to the distances of the absorption systems. We predict H magnitudes for our DLAs, assuming they are producing stars like an L* Lyman-break galaxy (LBG) at their redshift. Comparing these predictions to our sensitivity, we find that we should be able to detect a galaxy around 0.5-1.0 L* (LBG) for most of our observations. We find only one new possible candidate, that near LBQS0010-0012. This scarcity of candidates leads us to the conclusion that most DLA systems are not drawn from a normal LBG luminosity function nor a local galaxy luminosity function placed at these high redshifts.Comment: 31 pages, 8 figures, Accepted for Feb. 10 issue of Ap

    Using Gravitational Lensing to study HI clouds at high redshift

    Full text link
    We investigate the possibility of detecting HI emission from gravitationally lensed HI clouds (akin to damped Lyman-α\alpha clouds) at high redshift by carrying out deep radio observations in the fields of known cluster lenses. Such observations will be possible with present radio telescopes only if the lens substantially magnifies the flux of the HI emission. While at present this holds the only possibility of detecting the HI emission from such clouds, it has the disadvantage of being restricted to clouds that lie very close to the caustics of the lens. We find that observations at a detection threshold of 50 micro Jy at 320 MHz (possible with the GMRT) have a greater than 20% probability of detecting an HI cloud in the field of a cluster, provided the clouds have HI masses in the range 5 X 10^8 M_{\odot} < M_{HI} < 2.5 X 10^{10} M_{\odot}. The probability of detecting a cloud increases if they have larger HI masses, except in the cases where the number of HI clouds in the cluster field becomes very small. The probability of a detection at 610 MHz and 233 MHz is comparable to that at 320 MHz, though a definitive statement is difficult owing to uncertainties in the HI content at the redshifts corresponding to these frequencies. Observations at a detection threshold of 2 micro Jy (possible in the future with the SKA) are expected to detect a few HI clouds in the field of every cluster provided the clouds have HI masses in the range 2 X 10^7 M_{\odot} < M_{HI} < 10^9 M_{\odot}. Even if such observations do not result in the detection of HI clouds, they will be able to put useful constraints on the HI content of the clouds.Comment: 21 pages, 7 figures, minor changes in figures, accepted for publication in Ap

    The clock paradox in a static homogeneous gravitational field

    Get PDF
    The gedanken experiment of the clock paradox is solved exactly using the general relativistic equations for a static homogeneous gravitational field. We demonstrate that the general and special relativistic clock paradox solutions are identical and in particular that they are identical for finite acceleration. Practical expressions are obtained for proper time and coordinate time by using the destination distance as the key observable parameter. This solution provides a formal demonstration of the identity between the special and general relativistic clock paradox with finite acceleration and where proper time is assumed to be the same in both formalisms. By solving the equations of motion for a freely falling clock in a static homogeneous field elapsed times are calculated for realistic journeys to the stars.Comment: Revision: Posted with the caption included with the figure
    corecore