6,684 research outputs found

    The metal absorption systems of the Hubble Deep Field South QSO

    Get PDF
    The Hubble Deep Field South (HDFS) has been recently selected and the observations are planned for October 1998. We present a high resolution (FWHM ≃14\simeq 14 \kms) spectrum of the quasar J2233--606 (zem≃2.22z_{em}\simeq2.22) which is located 5.1 arcmin East of the HDFS. The spectrum obtained with the New Technology Telescope redward of the Lyman--α\alpha emission line covers the spectral range 4386--8270 \AA. This range corresponds to redshift intervals for CIV and MgII intervening systems of z=1.83−2.25z=1.83-2.25 and z=0.57−1.95z=0.57-1.95 respectively. The data reveal the presence of two complex intervening CIV systems at redshift z=1.869z=1.869 and z=1.943z=1.943 and two complex associated (zabs≈zemz_{abs} \approx z_{em}) systems. Other two CIV systems at z=1.7865z=1.7865 and z=2.077z=2.077, suggested by the presence of strong Lyman--α\alpha lines in low resolution ground based and Hubble Space Telescope (HST) STIS observations (Sealey et al. 1998) have been identified. The system at z=1.943z=1.943 is also responsible for the Lyman limit absorption seen in the HST/STIS spectrum. The main goal of the present work is to provide astronomers interested in the Hubble Deep Field South program with information related to absorbing structures at high redshift, which are distributed along the nearby QSO line of sight. For this purpose, the reduced spectrum, obtained from three hours of integration time, has been released to the astronomical community.Comment: revisited version accepted for publication by Astronomical Journal; minor changes; typographical errors corrected; results and discussion unchange

    Comment on "Giant absorption cross section of ultracold neutrons in Gadolinium"

    Full text link
    Rauch et al (PRL 83, 4955, 1999) have compared their measurements of the Gd cross section for Ultra-cold neutrons with an exptrapolation of the cross section for thermal neutrons and interpreted the discrepancy in terms of coherence properties of the neutron. We show the extrapolation used is based on a misunderstanding and that coherence properties play no role in absorption.Comment: 2 pages, 1 postscript figure, comment on Rauch et al, PRL 83,4955 (1999

    The Serendipitous Discovery of a Group or Cluster of young Galaxies at z=2.40 in Deep Hubble Space Telescope WFPC2 Images

    Full text link
    We report the serendipitous discovery of a group or cluster of young galaxies at z≃z\simeq2.40 in a 24-orbit HST/WFPC2 exposure of the field around the weak radio galaxy 53W002. Potential cluster members were identified on ground-based narrow-band redshifted Lyα\alpha images and confirmed via spectroscopy. In addition to the known weak radio galaxy 53W002 at z=2.390, two other objects were found to have excess narrow-band Lyα\alpha emission at z≃z\simeq2.40. Both have been spectroscopically confirmed, and one clearly contains a weak AGN. They are located within one arcminute of 53W002, or ∌0.23h100−1\sim0.23h_{100}^{-1}Mpc (qoq_o=0.5) at z≃z\simeq2.40, which is the physical scale of a group or small cluster of galaxies. Profile fitting of the WFPC2 images shows that the objects are very compact, with scale lengths ≃\simeq0\farcs 1 (≃0.39h100−1\simeq0.39h_{100}^{-1}kpc), and are rather faint (luminosities < L*), implying that they may be sub-galactic sized objects. We discuss these results in the context of galaxy and cluster evolution and the role that weak AGN may play in the formation of young galaxies.Comment: Accepted for publication in The Astrophysical Journal (Letters). 13 pages of gzip compressed and uuencoded PS. Figures are available at http://www.phys.unsw.edu.au/~spd/bib.htm

    Mathisson's helical motions for a spinning particle --- are they unphysical?

    Get PDF
    It has been asserted in the literature that Mathisson's helical motions are unphysical, with the argument that their radius can be arbitrarily large. We revisit Mathisson's helical motions of a free spinning particle, and observe that such statement is unfounded. Their radius is finite and confined to the disk of centroids. We argue that the helical motions are perfectly valid and physically equivalent descriptions of the motion of a spinning body, the difference between them being the choice of the representative point of the particle, thus a gauge choice. We discuss the kinematical explanation of these motions, and we dynamically interpret them through the concept of hidden momentum. We also show that, contrary to previous claims, the frequency of the helical motions coincides, even in the relativistic limit, with the zitterbewegung frequency of the Dirac equation for the electron

    The Properties of Field Elliptical Galaxies at Intermediate Redshift. I: Empirical Scaling Laws

    Get PDF
    We present measurements of the Fundamental Plane (FP) parameters (the effective radius, the mean effective surface brightness, and the central velocity dispersion) of six field elliptical galaxies at intermediate redshift. The imaging is taken from the Medium Deep Survey of the Hubble Space Telescope, while the kinematical data are obtained from long-slit spectroscopy using the 3.6-m ESO telescope. The Fundamental Plane appears well defined in the field even at redshift ≈\approx 0.3. The data show a shift in the FP zero point with respect to the local relation, possibly indicating modest evolution, consistent with the result found for intermediate redshift cluster samples. The FP slopes derived for our field data, plus other cluster ellipticals at intermediate redshift taken from the literature, differ from the local ones, but are still consistent with the interpretation of the FP as a result of homology, of the virial theorem and of the existence of a relation between luminosity and mass, L∝MηL \propto M^{\eta}. We also derive the surface brightness vs. effective radius relation for nine galaxies with redshift up to z≈0.6z \approx0.6, and data from the literature; the evolution that can be inferred is consistent with what is found using the FP.Comment: 17 pages, including 9 figures, MNRAS, accepte

    Simulation of gauge transformations on systems of ultracold atoms

    Full text link
    We show that gauge transformations can be simulated on systems of ultracold atoms. We discuss observables that are invariant under these gauge transformations and compute them using a tensor network ansatz that escapes the phase problem. We determine that the Mott-insulator-to-superfluid critical point is monotonically shifted as the induced magnetic flux increases. This result is stable against the inclusion of a small amount of entanglement in the variational ansatz.Comment: 14 pages, 6 figure

    Towards a Notion of Distributed Time for Petri Nets

    No full text
    We set the ground for research on a timed extension of Petri nets where time parameters are associated with tokens and arcs carry constraints that qualify the age of tokens required for enabling. The novelty is that, rather than a single global clock, we use a set of unrelated clocks --- possibly one per place --- allowing a local timing as well as distributed time synchronisation. We give a formal definition of the model and investigate properties of local versus global timing, including decidability issues and notions of processes of the respective models

    Rotating light, OAM paradox and relativistic complex scalar field

    Full text link
    Recent studies show that the angular momentum, both spin and orbital, of rotating light beams possesses counter-intuitive characteristics. We present a new approach to the question of orbital angular momentum of light based on the complex massless scalar field representation of light. The covariant equation for the scalar field is treated in rotating system using the general relativistic framework. First we show the equivalence of the U(1) gauge current for the scalar field with the Poynting vector continuity equation for paraxial light, and then apply the formalism to the calculation of the orbital angular momentum of rotating light beams. If the difference between the co-, contra-, and physical quantities is properly accounted for there does not result any paradox in the orbital angular momentum of rotating light. An artificial analogue of the paradoxical situation could be constructed but it is wrong within the present formalism. It is shown that the orbital angular momentum of rotating beam comprising of modes with opposite azimuthal indices corresponds to that of rigid rotation. A short review on the electromagnetism in noninertial systems is presented to motivate a fully covariant Maxwell field approach in rotating system to address the rotating light phenomenon.Comment: No figure

    Saturation properties and incompressibility of nuclear matter: A consistent determination from nuclear masses

    Get PDF
    Starting with a two-body effective nucleon-nucleon interaction, it is shown that the infinite nuclear matter model of atomic nuclei is more appropriate than the conventional Bethe-Weizsacker like mass formulae to extract saturation properties of nuclear matter from nuclear masses. In particular, the saturation density thus obtained agrees with that of electron scattering data and the Hartree-Fock calculations. For the first time using nuclear mass formula, the radius constant r0r_0=1.138 fm and binding energy per nucleon ava_v = -16.11 MeV, corresponding to the infinite nuclear matter, are consistently obtained from the same source. An important offshoot of this study is the determination of nuclear matter incompressibility K∞K_{\infty} to be 288±\pm 28 MeV using the same source of nuclear masses as input.Comment: 14 latex pages, five figures available on request ( to appear in Phy. Rev. C

    Early mortality from colorectal cancer in England: a retrospective observational study of the factors associated with death in the first year after diagnosis

    Get PDF
    Background: The United Kingdom performs poorly in international comparisons of colorectal cancer survival with much of the deficit owing to high numbers of deaths close to the time of diagnosis. This retrospective cohort study investigates the patient, tumour and treatment characteristics of those who die in the first year after diagnosis of their disease. Methods: Patients diagnosed with colon (n=65,733) or rectal (n=26,123) cancer in England between 2006 and 2008 were identified in the National Cancer Data Repository. Multivariable logistic regression was used to investigate the odds of death within 1 month, 1-3 months and 3-12 months after diagnosis. Results: In all, 11.5% of colon and 5.4% of rectal cancer patients died within a month of diagnosis: this proportion decreased significantly over the study period. For both cancer sites, older age, stage at diagnosis, deprivation and emergency presentation were associated with early death. Individuals who died shortly after diagnosis were also more likely to have missing data about important prognostic factors such as disease stage and treatment. Conclusion: Using routinely collected data, at no inconvenience to patients, we have identified some important areas relating to early deaths from colorectal cancer, which merit further research
    • 

    corecore