4,844 research outputs found

    Development of a scanning electron mirror microscope

    Get PDF
    Scanning electron mirrors microscope design and developmen

    The Cauchy-Schlomilch transformation

    Full text link
    The Cauchy-Schl\"omilch transformation states that for a function ff and a, b>0a, \, b > 0, the integral of f(x2)f(x^{2}) and af((ax−bx−1)2af((ax-bx^{-1})^{2} over the interval [0,∞)[0, \infty) are the same. This elementary result is used to evaluate many non-elementary definite integrals, most of which cannot be obtained by symbolic packages. Applications to probability distributions is also given

    Vortices, shocks, and heating in the solar photosphere: effect of a magnetic field

    Full text link
    Aims: We study the differences between non-magnetic and magnetic regions in the flow and thermal structure of the upper solar photosphere. Methods: Radiative MHD simulations representing a quiet region and a plage region, respectively, which extend into the layers around the temperature minimum, are analyzed. Results: The flow structure in the upper photospheric layers of the two simulations is considerably different: the non-magnetic simulation is dominated by a pattern of moving shock fronts while the magnetic simulation shows vertically extended vortices associated with magnetic flux concentrations. Both kinds of structures induce substantial local heating. The resulting average temperature profiles are characterized by a steep rise above the temperature minimum due to shock heating in the non-magnetic case and by a flat photospheric temperature gradient mainly caused by Ohmic dissipation in the magnetic run. Conclusions: Shocks in the quiet Sun and vortices in the strongly magnetized regions represent the dominant flow structures in the layers around the temperature minimum. They are closely connected with dissipation processes providing localized heating.Comment: Accepted for publicaton in A&

    Thrombotic antiphospholipid syndrome: A practical guide to diagnosis and management

    Get PDF
    Thrombotic antiphospholipid syndrome (APS) is characterised by venous, arterial and/or small vessel thrombosis in the context of persistently positive antiphospholipid antibodies (aPL). The diagnosis and management of thrombotic APS continues to prove challenging for clinicians. We provide a practical guide to the diagnosis of APS including who to test for aPL and which tests to do. We also consider clinical practice points on the management of venous, arterial and small vessel thrombosis, in the context of first and recurrent thrombotic events. Non-criteria manifestations of APS are reviewed. An approach to recurrent thrombosis and anticoagulant-refractory APS is discussed, with options including increasing the anticoagulation intensity of vitamin K antagonists, switching to low-molecular-weight-heparin, the use of fondaparinux and/or the addition of antiplatelet treatment. Adjunctive options such as vitamin D, hydroxychloroquine and statins are also addressed

    Vortices in simulations of solar surface convection

    Full text link
    We report on the occurrence of small-scale vortices in simulations of the convective solar surface. Using an eigenanalysis of the velocity gradient tensor, we find the subset of high vorticity regions in which the plasma is swirling. The swirling regions form an unsteady, tangled network of filaments in the turbulent downflow lanes. Near-surface vertical vortices are underdense and cause a local depression of the optical surface. They are potentially observable as bright points in the dark intergranular lanes. Vortex features typically exist for a few minutes, during which they are moved and twisted by the motion of the ambient plasma. The bigger vortices found in the simulations are possibly, but not necessarily, related to observations of granular-scale spiraling pathlines in "cork animations" or feature tracking.Comment: 11 pages, 13 figures, accepted for publication in A&A, complementary movies at http://www.mps.mpg.de/homes/moll/strudel/papermovies

    Weak formulation for singular diffusion equation with dynamic boundary condition

    Full text link
    In this paper, we propose a weak formulation of the singular diffusion equation subject to the dynamic boundary condition. The weak formulation is based on a reformulation method by an evolution equation including the subdifferential of a governing convex energy. Under suitable assumptions, the principal results of this study are stated in forms of Main Theorems A and B, which are respectively to verify: the adequacy of the weak formulation; the common property between the weak solutions and those in regular problems of standard PDEs.Comment: 23 page

    The effects of a plant proteinase inhibitor from Enterolobium contortisiliquum on human tumor cell lines

    Get PDF
    Supplementary to the efficient inhibition of trypsin, chymotrypsin, plasma kallikrein, and plasmin already described by the EcTI inhibitor from Enterolobium contortisiliquum, it also blocks human neutrophil elastase (K(iapp)=4.3 nM) and prevents phorbol ester (PMA)-stimulated activation of matrix metalloproteinase (MMP)-2 probably via interference with membrane-type 1 (MT1)-MMP. Moreover, plasminogen-induced activation of proMMP-9 and processing of active MMP-2 was also inhibited. Furthermore, the effect of EcTI on the human cancer cell lines HCT116 and HT29 (colorectal), SkBr-3 and MCF-7 (breast), K562 and THP-1 (leukemia), as well as on human primary fibroblasts and human mesenchymal stem cells (hMSCs) was studied. EcTI inhibited in a concentration range of 1.0-2.5 mu M rather specifically tumor cell viability without targeting primary fibroblasts and hMSCs. Taken together, our data indicate that the polyspecific proteinase inhibitor EcTI prevents proMMP activation and is cytotoxic against tumor cells without affecting normal tissue remodeling fibroblasts or regenerative hMSCs being an important tool in the studies of tumor cell development and dissemination
    • …
    corecore