17,531 research outputs found

    Evaluation of Target Date Funds

    Get PDF
    Target date funds are an emerging class of investment products, designed for retirement savings. The project considered methodologies for ranking such funds

    Inhomogeneous soliton ratchets under two ac forces

    Get PDF
    We extend our previous work on soliton ratchet devices [L. Morales-Molina et al., Eur. Phys. J. B 37, 79 (2004)] to consider the joint effect of two ac forces including non-harmonic drivings, as proposed for particle ratchets by Savele'v et al. [Europhys. Lett. 67}, 179 (2004); Phys. Rev. E {\bf 70} 066109 (2004)]. Current reversals due to the interplay between the phases, frequencies and amplitudes of the harmonics are obtained. An analysis of the effect of the damping coefficient on the dynamics is presented. We show that solitons give rise to non-trivial differences in the phenomenology reported for particle systems that arise from their extended character. A comparison with soliton ratchets in homogeneous systems with biharmonic forces is also presented. This ratchet device may be an ideal candidate for Josephson junction ratchets with intrinsic large damping

    A high-performance data structure for mobile information systems

    Get PDF
    Mobile information systems can now be provided on small form-factor computers. Dictionary-based data compression extends the capabilities of systems with limited processing and memory to enable data intensive applications to be supported in such environments. The nature of judicial sentencing decisions requires that a support system provides accurate and up-to-date data and is compatible with the professional working experience of a judge. The difficulties caused by mobility and the data dependence of the decision-making process are addressed by an Internet-based architecture for collecting and distributing system data.We describe an approach to dictionary-based data compression and the structure of an information system that makes use of this technology

    Inter- and intra-layer excitons in MoS2_2/WS2_2 and MoSe2_2/WSe2_2 heterobilayers

    Get PDF
    Accurately described excitonic properties of transition metal dichalcogenide heterobilayers (HBLs) are crucial to comprehend the optical response and the charge carrier dynamics of them. Excitons in multilayer systems posses inter or intralayer character whose spectral positions depend on their binding energy and the band alignment of the constituent single-layers. In this study, we report the electronic structure and the absorption spectra of MoS2_2/WS2_2 and MoSe2_2/WSe2_2 HBLs from first-principles calculations. We explore the spectral positions, binding energies and the origins of inter and intralayer excitons and compare our results with experimental observations. The absorption spectra of the systems are obtained by solving the Bethe-Salpeter equation on top of a G0_0W0_0 calculation which corrects the independent particle eigenvalues obtained from density functional theory calculations. Our calculations reveal that the lowest energy exciton in both HBLs possesses interlayer character which is decisive regarding their possible device applications. Due to the spatially separated nature of the charge carriers, the binding energy of inter-layer excitons might be expected to be considerably smaller than that of intra-layer ones. However, according to our calculations the binding energy of lowest energy interlayer excitons is only ∌\sim 20\% lower due to the weaker screening of the Coulomb interaction between layers of the HBLs. Therefore, it can be deduced that the spectral positions of the interlayer excitons with respect to intralayer ones are mostly determined by the band offset of the constituent single-layers. By comparing oscillator strengths and thermal occupation factors, we show that in luminescence at low temperature, the interlayer exciton peak becomes dominant, while in absorption it is almost invisible.Comment: 17 pages, 4 figure

    Scaling of entanglement between separated blocks in spin chains at criticality

    Full text link
    We compute the entanglement between separated blocks in certain spin models showing that at criticality this entanglement is a function of the ratio of the separation to the length of the blocks and can be written as a product of a power law and an exponential decay. It thereby interpolates between the entanglement of individual spins and blocks of spins. It captures features of correlation functions at criticality as well as the monogamous nature of entanglement. We exemplify invariant features of this entanglement to microscopic changes within the same universality class. We find this entanglement to be invariant with respect to simultaneous scale transformations of the separation and the length of the blocks. As a corollary, this study estimates the entanglement between separated regions of those quantum fields to which the considered spin models map at criticality.Comment: 4 pages, 3 figures; comments welcom
    • 

    corecore