25,176 research outputs found

    The attractive nonlinear delta-function potential

    Full text link
    We solve the continuous one-dimensional Schr\"{o}dinger equation for the case of an inverted {\em nonlinear} delta-function potential located at the origin, obtaining the bound state in closed form as a function of the nonlinear exponent. The bound state probability profile decays exponentially away from the origin, with a profile width that increases monotonically with the nonlinear exponent, becoming an almost completely extended state when this approaches two. At an exponent value of two, the bound state suffers a discontinuous change to a delta-like profile. Further increase of the exponent increases again the width of the probability profile, although the bound state is proven to be stable only for exponents below two. The transmission of plane waves across the nonlinear delta potential increases monotonically with the nonlinearity exponent and is insensitive to the sign of its opacity.Comment: submitted to Am. J. of Phys., sixteen pages, three figure

    Dispersive spherical optical model of neutron scattering from Al27 up to 250 MeV

    Get PDF
    A spherical optical model potential (OMP) containing a dispersive term is used to fit the available experimental database of angular distribution and total cross section data for n + Al27 covering the energy range 0.1- 250 MeV using relativistic kinematics and a relativistic extension of the Schroedinger equation. A dispersive OMP with parameters that show a smooth energy dependence and energy independent geometry are determined from fits to the entire data set. A very good overall agreement between experimental data and predictions is achieved up to 150 MeV. Inclusion of nonlocality effects in the absorptive volume potential allows to achieve an excellent agreement up to 250 MeV.Comment: 13 figures (11 eps and 2 jpg), 3 table

    Current and entanglement in a Bose-Hubbard lattice

    Full text link
    We study the generation of entanglement for interacting cold atoms in an optical lattice. The entanglement is generated by managing the interaction between two distinct atomic species. It is found that the current of one of the species can be used as a good indicator of entanglement generation. The thermalization process between the species is also shown to be closely related to the evolution of the current.Comment: 10 pages, 5 figure

    Ratchet behavior in nonlinear Klein-Gordon systems with point-like inhomogeneities

    Get PDF
    We investigate the ratchet dynamics of nonlinear Klein-Gordon kinks in a periodic, asymmetric lattice of point-like inhomogeneities. We explain the underlying rectification mechanism within a collective coordinate framework, which shows that such system behaves as a rocking ratchet for point particles. Careful attention is given to the kink width dynamics and its role in the transport. We also analyze the robustness of our kink rocking ratchet in the presence of noise. We show that the noise activates unidirectional motion in a parameter range where such motion is not observed in the noiseless case. This is subsequently corroborated by the collective variable theory. An explanation for this new phenomenom is given

    Two-color discrete localized modes and resonant scattering in arrays of nonlinear quadratic optical waveguides

    Full text link
    We analyze the properties and stability of two-color discrete localized modes in arrays of channel waveguides where tunable quadratic nonlinearity is introduced as a nonlinear defect by periodic poling of a single waveguide in the array. We show that, depending on the value of the phase mismatch and the input power, such two-color defect modes can be realized in three different localized states. We also study resonant light scattering in the arrays with the defect waveguide.Comment: 10 pages, 3 figures, published in PR

    Controlled localization of interacting bosons in a disordered optical lattice

    Get PDF
    We show that tunneling and localization properties of interacting ultracold atoms in an optical lattice can be controlled by adiabatically turning on a fast oscillatory force even in the presence of disorder. Our calculations are based on the exact solution of the time-dependent Schroedinger equation, using the Floquet formalism. Implications of our findings for larger systems and the possibility of controlling the phase diagram of disordered-interacting bosonic systems are discussed.Comment: 7 pages 7 fig
    corecore