1,021 research outputs found

    Strong asymmetry for surface modes in nonlinear lattices with long-range coupling

    Full text link
    We analyze the formation of localized surface modes on a nonlinear cubic waveguide array in the presence of exponentially-decreasing long-range interactions. We find that the long-range coupling induces a strong asymmetry between the focusing and defocusing cases for the topology of the surface modes and also for the minimum power needed to generate them. In particular, for the defocusing case, there is an upper power threshold for exciting staggered modes, which depends strongly on the long-range coupling strength. The power threshold for dynamical excitation of surface modes increase (decrease) with the strength of long-range coupling for the focusing (defocusing) cases. These effects seem to be generic for discrete lattices with long-range interactions.Comment: 4 pages, 5 figures, submitted for publicatio

    Flow Tube Studies of Gas Phase Chemical Processes of Atmospheric Importance

    Get PDF
    The objective of this project is to conduct measurements of elementary reaction rate constants and photochemistry parameters for processes of importance in the atmosphere. These measurements are being carried out under temperature and pressure conditions covering those applicable to the stratosphere and upper troposphere, using the chemical ionization mass spectrometry turbulent flow technique developed in our laboratory

    Review of ultraviolet absorption cross sections of a series of alternative fluorocarbons

    Get PDF
    Solar photolysis is likely to contribute to the stratospheric destruction of those alternative fluorocarbons (HFC's) which have two or more chlorine atoms bonded to the same carbon atom. Two of the eight HFC's considered here fall into this category, namely HFC-123 and HFC141b. For these two species there is good agreement among the various measurements of the ultraviolet cross sections in the wavelength region which is important for atmospheric photodissociation, that is, around 200 nm. There is also good agreement for HFC-124, HFC-22 and HFC-142b. These are the three species which contain one chlorine atom per molecule. The agreement in the measurements is poor for the other species, i.e., those that do not contain chlorine, except in so far as to corroborate that solar photolysis should be negligible relative to destruction by hydroxyl radicals

    Diffusion in infinite and semi-infinite lattices with long-range coupling

    Full text link
    We prove that for a one-dimensional infinite lattice, with long-range coupling among sites, the diffusion of an initial delta-like pulse in the bulk, is ballistic at all times. We obtain a closed-form expression for the mean square displacement (MSD) as a function of time, and show some cases including finite range coupling, exponentially decreasing coupling and power-law decreasing coupling. For the case of an initial excitation at the edge of the lattice, we find an approximate expression for the MSD that predicts ballistic behavior at long times, in agreement with numerical results.Comment: 4 pages, 5 figures, submitted for publicatio

    Dissipative vortex solitons in 2D-lattices

    Get PDF
    We report the existence of stable symmetric vortex-type solutions for two-dimensional nonlinear discrete dissipative systems governed by a cubic-quintic complex Ginzburg-Landau equation. We construct a whole family of vortex solitons with a topological charge S = 1. Surprisingly, the dynamical evolution of unstable solutions of this family does not alter significantly their profile, instead their phase distribution completely changes. They transform into two-charges swirl-vortex solitons. We dynamically excite this novel structure showing its experimental feasibility.Comment: 4 pages, 20 figure

    Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City

    Get PDF
    The emission characteristics of mobile sources in the Mexico City Metropolitan Area (MCMA) have changed significantly over the past few decades in response to emission control policies, advancements in vehicle technologies and improvements in fuel quality, among others. Along with these changes, concurrent non-linear changes in photochemical levels and criteria pollutants have been observed, providing a unique opportunity to understand the effects of perturbations of mobile emission levels on the photochemistry in the region using observational and modeling approaches. The observed historical trends of ozone (O3), carbon monoxide (CO) and nitrogen oxides (NOx) suggest that ozone production in the MCMA has changed from a low to a high VOC-sensitive regime over a period of 20 years. Comparison of the historical emission trends of CO, NOx and hydrocarbons derived from mobile-source emission studies in the MCMA from 1991 to 2006 with the trends of the concentrations of CO, NOx, and the CO/NOx ratio during peak traffic hours also indicates that fuel-based fleet average emission factors have significantly decreased for CO and VOCs during this period whereas NOx emission factors do not show any strong trend, effectively reducing the ambient VOC/NOx ratio. This study presents the results of model analyses on the sensitivity of the observed ozone levels to the estimated historical changes in its precursors. The model sensitivity analyses used a well-validated base case simulation of a high pollution episode in the MCMA with the mathematical Decoupled Direct Method (DDM) and the standard Brute Force Method (BFM) in the 3-D CAMx chemical transport model. The model reproduces adequately the observed historical trends and current photochemical levels. Comparison of the BFM and the DDM sensitivity techniques indicates that the model yields ozone values that increase linearly with NOx emission reductions and decrease linearly with VOC emission reductions only up to 30% from the base case. We further performed emissions perturbations from the gasoline fleet, diesel fleet, all mobile (gasoline plus diesel) and all emission sources (anthropogenic plus biogenic). The results suggest that although large ozone reductions obtained in the past were from changes in emissions from gasoline vehicles, currently significant benefits could be achieved with additional emission control policies directed to regulation of VOC emissions from diesel and area sources that are high emitters of alkenes, aromatics and aldehydes.National Science Foundation (U.S.) (ATM-0528227)Mexico. Comisión Ambiental Metropolitan

    Oxidative capacity of the Mexico City atmosphere - Part 1: A radical source perspective

    Get PDF
    A detailed analysis of OH, HO2 [HO subscript 2] and RO2 [RO subscript 2] radical sources is presented for the near field photochemical regime inside the Mexico City Metropolitan Area (MCMA). During spring of 2003 (MCMA-2003 field campaign) an extensive set of measurements was collected to quantify time-resolved ROx [RO subscript x] (sum of OH, HO2 [HO subscript 2], RO2 [RO subscript 2]) radical production rates from day- and nighttime radical sources. The Master Chemical Mechanism (MCMv3.1) was constrained by measurements of (1) concentration time-profiles of photosensitive radical precursors, i.e., nitrous acid (HONO), formaldehyde (HCHO), ozone (O3 [o subscript 3]), glyoxal (CHOCHO), and other oxygenated volatile organic compounds (OVOCs); (2) respective photolysis-frequencies (J-values); (3) concentration time-profiles of alkanes, alkenes, and aromatic VOCs (103 compound are treated) and oxidants, i.e., OH- and NO3 [NO subscript 3] radicals, O3 [O subscript 3]; and (4) NO, NO2 [NO subscript 2], meteorological and other parameters. The ROx [RO subscript x] production rate was calculated directly from these observations; the MCM was used to estimate further ROx [RO subscript x] production from unconstrained sources, and express overall ROx [RO subscript x] production as OH-equivalents (i.e., taking into account the propagation efficiencies of RO2 [RO subscript 2] and HO2 [HO subscript 2] radicals into OH radicals). Daytime radical production is found to be about 10–25 times higher than at night; it does not track the abundance of sunlight. 12-h average daytime contributions of individual sources are: Oxygenated VOC other than HCHO about 33%; HCHO and O3 [O subscript 3] photolysis each about 20%; O3/alkene [O subscript 3 / alkene] reactions and HONO photolysis each about 12%, other sources <3%. Nitryl chloride photolysis could potentially contribute ~15% additional radicals, while NO2* [NO subscript 2*] + water makes – if any – a very small contribution (~2%). The peak radical production of ~7.5 107 [10 superscript 7] molec cm−3 [cm superscript -3] s−1 [s superscript -1] is found already at 10:00 a.m., i.e., more than 2.5 h before solar noon. O3/alkene [O subscript 3 / alkene] reactions are indirectly responsible for ~33% of these radicals. Our measurements and analysis comprise a database that enables testing of the representation of radical sources and radical chain reactions in photochemical models. Since the photochemical processing of pollutants in the MCMA is radical limited, our analysis identifies the drivers for ozone and SOA formation. We conclude that reductions in VOC emissions provide an efficient opportunity to reduce peak concentrations of these secondary pollutants, because (1) about 70% of radical production is linked to VOC precursors; (2) lowering the VOC/NOx [VOC / NO subscript x] ratio has the further benefit of reducing the radical re-cycling efficiency from radical chain reactions (chemical amplification of radical sources); (3) a positive feedback is identified: lowering the rate of radical production from organic precursors also reduces that from inorganic precursors, like ozone, as pollution export from the MCMA caps the amount of ozone that accumulates at a lower rate inside the MCMA. Continued VOC reductions will in the future result in decreasing peak concentrations of ozone and SOA in the MCMA.National Science Foundation (U.S.) (Grant ATM-0528227)United States. Dept. of Energy (Grant DE-FG02-0563980)Mexico. Comisión Ambiental MetropolitanaNational Science Foundation (U.S.) (CAREER grant ATM-0847793)Alliance for Global Sustainabilit

    Oxidative capacity of the Mexico City atmosphere - Part 2: A ROx radical cycling perspective

    Get PDF
    A box model using measurements from the Mexico City Metropolitan Area study in the spring of 2003 (MCMA-2003) is presented to study oxidative capacity (our ability to predict OH radicals) and ROx (ROx=OH+HO2+RO2+RO) radical cycling in a polluted (i.e., very high NOx=NO+NO2) atmosphere. Model simulations were performed using the Master Chemical Mechanism (MCMv3.1) constrained with 10 min averaged measurements of major radical sources (i.e., HCHO, HONO, O3, CHOCHO, etc.), radical sink precursors (i.e., NO, NO2, SO2, CO, and 102 volatile organic compounds (VOC)), meteorological parameters (temperature, pressure, water vapor concentration, dilution), and photolysis frequencies. Modeled HOx (=OH+HO2) concentrations compare favorably with measured concentrations for most of the day; however, the model under-predicts the concentrations of radicals in the early morning. This "missing reactivity" is highest during peak photochemical activity, and is least visible in a direct comparison of HOx radical concentrations. We conclude that the most likely scenario to reconcile model predictions with observations is the existence of a currently unidentified additional source for RO2 radicals, in combination with an additional sink for HO2 radicals that does not form OH. The true uncertainty due to "missing reactivity" is apparent in parameters like chain length. We present a first attempt to calculate chain length rigorously i.e., we define two parameters that account for atmospheric complexity, and are based on (1) radical initiation, n(OH), and (2) radical termination, ω. We find very high values of n(OH) in the early morning are incompatible with our current understanding of ROx termination routes. We also observe missing reactivity in the rate of ozone production (P(O3)). For example, the integral amount of ozone produced could be under-predicted by a factor of two. We argue that this uncertainty is partly accounted for in lumped chemical codes that are optimized to predict ozone concentrations; however, these codes do not reflect the true uncertainty in oxidative capacity that is relevant to other aspects of air quality management, such as the formation of secondary organic aerosol (SOA). Our analysis highlights that apart from uncertainties in emissions, and meteorology, there is an additional major uncertainty in chemical mechanisms that affects our ability to predict ozone and SOA formation with confidence.National Science Foundation (U.S.) (ATM-0528227)United States. Dept. of Energy (Grant DE-FG02-0563980)Alliance for Global SustainabilityHenry & Camille Dreyfus FoundationAlexander von Humboldt-StiftungNational Science Foundation (U.S.) (CAREER award ATM-0847793

    Visualization data on the freezing process of micrometer-scaled aqueous citric acid drops

    Get PDF
    Abstract The visualization data (8 movies) presented in this article are related to the research article entitled “Freezing and glass transitions upon cooling and warming and ice/freeze-concentration-solution morphology of emulsified aqueous citric acid” (A. Bogdan, M.J. Molina, H. Tenhu, 2016) [1]. The movies recorded in-situ with optical cryo-miscroscopy (OC-M) demonstrate for the first time freezing processes that occur during the cooling and subsequent warming of emulsified micrometer-scaled aqueous citric acid (CA) drops. The movies are made publicly available to enable critical or extended analyzes.Peer reviewe

    Phase Equilibria of H2SO4, HNO3, and HCl Hydrates and the Composition of Polar Stratospheric Clouds

    Get PDF
    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available
    corecore