487 research outputs found

    Combining laser microdissection and microRNA expression profiling to unmask microRNA signatures in complex tissues

    Get PDF
    Neglecting tissue heterogeneity during the analysis of microRNA (miRNA) levels results in average signals from an unknown mixture of different cell types that are difficult to interpret. Here we demonstrate the technical requirements needed to obtain high-quality, quantitative miRNA expression infor- mation from tumor tissue compartments obtained by laser microdissection (LMD). Furthermore, we show the significance of disentangling tumor tissue heterogeneity by applying the newly developed protocols for combining LMD of tumor tissue compartments with RT-qPCR analysis to reveal compartment- specific miRNA expression signatures. An important advantage of this strategy is that the miRNA signature can be directly linked to histopatho logy. In summary, combining LMD and RT-qPCR is a powerful approach for spatial miRNA expression analysis in complex tissues, enabling discovery of disease mechanisms, biomarkers and drug candidates

    Neovascularization and vascular markers in a foreign body reaction to subcutaneously implanted degradable biomaterial in mice

    Get PDF
    To study the spatiotemporal processes of angiogenesis during a foreign body reaction (FBR), biodegradable bovine collagen type-1 (COL-I) discs were implanted in mice for a period up to 28 days. The cellular infiltration (consisting mainly of macrophages, giant cells and fibroblasts), and the extent of neovascularization into the discs were determined. Also the expression levels and/or distribution of the endothelial cell markers von Willebrand factor (vWF), platelet endothelial cell adhesion molecule-1 (PECAM-1)/CD31, MECA-32 antigens and endomucin, and of the basal lamina marker collagen type IV (Coll IV) were analysed. In time, a strong neovascularization of the discs was observed, with frequently occurring vascular sprouting, and intussusceptive growth of vessels. In this model, vWF, MECA-32 and endomucin antibodies often failed to stain neovessels in the COL-I discs. In contrast, staining for collagen IV basal lamina component in combination with CD31 covered the complete range of neo-vessels. We conclude that the model described in this study is a useful model to study FBR induced angiogenesis because of the active neovascularization taking place during prolonged periods of time.</p

    Streptococcus pneumoniae Interacts with pIgR Expressed by the Brain Microvascular Endothelium but Does Not Co-Localize with PAF Receptor

    Get PDF
    Streptococcus pneumoniae is thought to adhere to the blood-brain barrier (BBB) endothelium prior to causing meningitis. The platelet activating factor receptor (PAFR) has been implicated in this adhesion but there is a paucity of data demonstrating direct binding of the bacteria to PAFR. Additionally, studies that inhibit PAFR strongly suggest that alternative receptors for pneumococci are present on the endothelium. Therefore, we studied the roles of PAFR and pIgR, an established epithelial pneumococcal receptor, in pneumococcal adhesion to brain endothelial cells in vivo. Mice were intravenously infected with pneumococci and sacrificed at various time points before meningitis onset. Co-localization of bacteria with PAFR and pIgR was investigated using immunofluorescent analysis of the brain tissue. In vitro blocking with antibodies and incubation of pneumococci with endothelial cell lysates were used to further probe bacteria-receptor interaction. In vivo as well as in vitro pneumococci did not co-localize with PAFR. On the other hand the majority of S. pneumoniae co-localized with endothelial pIgR and pIgR blocking reduced pneumococcal adhesion to endothelial cells. Pneumococci physically interacted with pIgR in endothelial cell lysates. In conclusion, bacteria did not associate with PAFR, indicating an indirect role of PAFR in pneumococcal adhesion to endothelial cells. In contrast, pIgR on the BBB endothelium may represent a novel pneumococcal adhesion receptor

    Chronically ill patients' preferences for a financial incentive in a lifestyle intervention. Results of a discrete choice experiment

    Get PDF
    Background The preferences of diabetes type 2 patients and cardiovascular disease patients for a financial incentive added to a specified combined lifestyle intervention were investigated. Methods A discrete choice experiment questionnaire was filled out by 290 diabetes type 2 patients (response rate 29.9%). Panel-mixed-logit models were used to estimate the preferences for a financial incentive. Potential uptake rates of different financial incentives and relative importance scores of the included attributes were estimated. Included attributes and levels were: form of the incentive (cash money and different types of vouchers), value of the incentive (ranging from 15 to 100 euros), moment the incentive is received (start, halfway, after finishing the intervention) and prerequisite for receiving the incentive (registration, attendance or results at group or individual level). Results Prerequisites for receiving the financial incentive were the most important attribute, according to the respondents. Potential uptake rates for different financial incentives ranged between 37.9% and 58.8%. The latter uptake rate was associated with a financial incentive consisting of cash money with a value of €100 that is handed out after completing the lifestyle program with the prerequisite that the participant attended at least 75% of the scheduled meetings. Conclusions The potential uptake of the different financial incentives varied between 37.9% and 58.8%. The value of the incentive does not significantly influence the potential uptake. However, the potential uptake and associated potential effect of the financial incentive is influenced by the type of financial incentive. The preferred type of incentive is €100 in cash money, awarded after completing the lifestyle program if the participant attended at least 75% of the scheduled meetings

    Reduced Tie2 in Microvascular Endothelial Cells Is Associated with Organ-Specific Adhesion Molecule Expression in Murine Health and Endotoxemia

    Get PDF
    Endothelial cells (ECs) in the microvasculature in organs are active participants in the pathophysiology of sepsis. Tyrosine protein kinase receptor Tie2 (Tek; Tunica interna Endothelial cell Kinase) is thought to play a role in their inflammatory response, yet data are inconclusive. We investigated acute endotoxemia-induced changes in the expression of Tie2 and inflammation-associated endothelial adhesion molecules E-selectin and VCAM-1 (vascular cell adhesion molecule-1) in kidneys and lungs in inducible, EC-specific Tie2 knockout mice. The extent of Tie2 knockout in healthy mice differed between microvascular beds, with low to absent expression in arterioles in kidneys and in capillaries in lungs. In kidneys, Tie2 mRNA dropped more than 70% upon challenge with lipopolysaccharide (LPS) in both genotypes, with no change in protein. In renal arterioles, tamoxifen-induced Tie2 knockout was associated with higher VCAM-1 protein expression in healthy conditions. This did not increase further upon challenge of mice with LPS, in contrast to the increased expression occurring in control mice. Also, in lungs, Tie2 mRNA levels dropped within 4 h after LPS challenge in both genotypes, while Tie2 protein levels did not change. In alveolar capillaries, where tamoxifen-induced Tie2 knockout did not affect the basal expression of either adhesion molecule, a 4-fold higher E-selectin protein expression was observed after exposure to LPS compared to controls. The here-revealed heterogeneous effects of absence of Tie2 in ECs in kidney and lung microvasculature in health and in response to acute inflammatory activation calls for further in vivo investigations into the role of Tie2 in EC behavior. </p

    Perceived barriers and facilitators of the implementation of a combined lifestyle intervention with a financial incentive for chronically ill patients

    Get PDF
    Background  This study aims to describe barriers and facilitators of the implementation of a combined lifestyle intervention (CLI) in primary care for patients with chronic disease. The aim of CLI to help patients to create a healthy lifestyle and to maintain this healthy lifestyle. During a CLI a patient receives advice and counselling to improve health-related behavior such as physical activity and diet. Special attention was given to the influence of adding a health promoting financial incentive (HPFI) for the participants to the CLI.  Methods  Twenty-four semi-structured interviews within six care groups were performed between July and October 2017. The interviews were transcribed verbatim and coded by two researchers independently.  Results  Respondents mentioned several preferred characteristics of the CLI such as easy accessibility of the intervention site and the presence of health care professionals during exercise sessions. Moreover, factors that could influence implementation (such as attitude of the health care professionals) and preconditions for a successful implementation of a CLI (such as structural funding and good infrastructure) were identified. Overall, positive HPFIs (e.g. a reward) were preferred over negative HPFIs (e.g. a fine). According to the respondents, HPFIs could positively influence the degree of participation, and break down barriers for participating in and finishing the CLI.  Conclusions  Multiple barriers and facilitators for successful implementation of a CLI were identified. For successful implementing CLIs, a positive attitude of all stakeholders is essential and specific preconditions should be fulfilled. With regard to adding a HPFI, more research is needed to identify the attitude of specific target groups towards an HPFI

    Organic acidurias: Major gaps, new challenges, and a yet unfulfilled promise

    Get PDF
    Organic acidurias (OADs) comprise a biochemically defined group of inherited metabolic diseases. Increasing awareness, reliable diagnostic work-up, newborn screening programs for some OADs, optimized neonatal and intensive care, and the development of evidence-based recommendations have improved neonatal survival and short-term outcome of affected individuals. However, chronic progression of organ dysfunction in an aging patient population cannot be reliably prevented with traditional therapeutic measures. Evidence is increasing that disease progression might be best explained by mitochondrial dysfunction. Previous studies have demonstrated that some toxic metabolites target mitochondrial proteins inducing synergistic bioenergetic impairment. Although these potentially reversible mechanisms help to understand the development of acute metabolic decompensations during catabolic state, they currently cannot completely explain disease progression with age. Recent studies identified unbalanced autophagy as a novel mechanism in the renal pathology of methylmalonic aciduria, resulting in impaired quality control of organelles, mitochondrial aging and, subsequently, progressive organ dysfunction. In addition, the discovery of post-translational short-chain lysine acylation of histones and mitochondrial enzymes helps to understand how intracellular key metabolites modulate gene expression and enzyme function. While acylation is considered an important mechanism for metabolic adaptation, the chronic accumulation of potential substrates of short-chain lysine acylation in inherited metabolic diseases might exert the opposite effect, in the long run. Recently, changed glutarylation patterns of mitochondrial proteins have been demonstrated in glutaric aciduria type 1. These new insights might bridge the gap between natural history and pathophysiology in OADs, and their exploitation for the development of targeted therapies seems promising

    Tumor Vascular Morphology Undergoes Dramatic Changes during Outgrowth of B16 Melanoma While Proangiogenic Gene Expression Remains Unchanged

    Get PDF
    In established tumors, angiogenic endothelial cells (ECs) coexist next to “quiescent” EC in matured vessels. We hypothesized that angio-gene expression of B16.F10 melanoma would differ depending on the growth stage. Unraveling the spatiotemporal nature thereof is essential for drug regimen design aimed to affect multiple neovascularization stages. We determined the angiogenic phenotype—represented by 52 angio-genes—and vascular morphology of small, intermediate, and large s.c. growing mouse B16.F10 tumors and demonstrated that expression of these genes did not differ between the different growth stages. Yet vascular morphology changed dramatically from small vessels without lumen in small to larger vessels with increased lumen size in intermediate/large tumors. Separate analysis of these vascular morphologies revealed a significant difference in αSMA expression in relation to vessel morphology, while no relation with VEGF, HIF-1α, nor Dll4 expression levels was observed. We conclude that the tumor vasculature remains actively engaged in angiogenesis during B16.F10 melanoma outgrowth and that the major change in tumor vascular morphology does not follow molecular concepts generated in other angiogenesis models

    Pattern of tamoxifen-induced Tie2 deletion in endothelial cells in mature blood vessels using endo SCL-Cre-ERT transgenic mice

    Get PDF
    Tyrosine-protein kinase receptor Tie2, also known as Tunica interna Endothelial cell Kinase or TEK plays a prominent role in endothelial responses to angiogenic and inflammatory stimuli. Here we generated a novel inducible Tie2 knockout mouse model, which targets mature (micro)vascular endothelium, enabling the study of the organ-specific contribution of Tie2 to these responses. Mice with floxed Tie2 exon 9 alleles (Tie2floxed/floxed) were crossed with end-SCL-Cre-ERT transgenic mice, generating offspring in which Tie2 exon 9 is deleted in the endothelial compartment upon tamoxifen-induced activation of Cre-recombinase (Tie2ΔE9). Successful deletion of Tie2 exon 9 in kidney, lung, heart, aorta, and liver, was accompanied by a heterogeneous, organ-dependent reduction in Tie2 mRNA and protein expression. Microvascular compartment-specific reduction in Tie2 mRNA and protein occurred in arterioles of all studied organs, in renal glomeruli, and in lung capillaries. In kidney, lung, and heart, reduced Tie2 expression was accompanied by a reduction in Tie1 mRNA expression. The heterogeneous, organ- and microvascular compartment-dependent knockout pattern of Tie2 in the Tie2floxed/floxed;end-SCL-Cre-ERT mouse model suggests that future studies using similar knockout strategies should include a meticulous analysis of the knockout extent of the gene of interest, prior to studying its role in pathological conditions, so that proper conclusions can be drawn
    corecore