76 research outputs found
Of balls, inks and cages: Hybrid biofabrication of 3D tissue analogs
The overarching principle of three-dimensional (3D) bioprinting is the placing of cells or cell clusters in the 3D space to generate a cohesive tissue microarchitecture that comes close to in vivo characteristics. To achieve this goal, several technical solutions are available, generating considerable combinatorial bandwidth: (i) Support structures are generated first, and cells are seeded subsequently; (ii) alternatively, cells are delivered in a printing medium, so-called “bioink,” that contains them during the printing process and ensures shape fidelity of the generated structure; and (iii) a “scaffold-free” version of bioprinting, where only cells are used and the extracellular matrix is produced by the cells themselves, also recently entered a phase of accelerated development and successful applications. However, the scaffold-free approaches may still benefit from secondary incorporation of scaffolding materials, thus expanding their versatility. Reversibly, the bioink-based bioprinting could also be improved by adopting some of the principles and practices of scaffold-free biofabrication. Collectively, we anticipate that combinations of these complementary methods in a “hybrid” approach, rather than their development in separate technological niches, will largely increase their efficiency and applicability in tissue engineering
Of balls, inks and cages: Hybrid biofabrication of 3D tissue analogs
The overarching principle of three-dimensional (3D) bioprinting is the placing of cells or cell clusters in the 3D space to generate a cohesive tissue microarchitecture that comes close to in vivo characteristics. To achieve this goal, several technical solutions are available, generating considerable combinatorial bandwidth: (i) Support structures are generated first, and cells are seeded subsequently; (ii) alternatively, cells are delivered in a printing medium, so-called “bioink,” that contains them during the printing process and ensures shape fidelity of the generated structure; and (iii) a “scaffold-free” version of bioprinting, where only cells are used and the extracellular matrix is produced by the cells themselves, also recently entered a phase of accelerated development and successful applications. However, the scaffold-free approaches may still benefit from secondary incorporation of scaffolding materials, thus expanding their versatility. Reversibly, the bioink-based bioprinting could also be improved by adopting some of the principles and practices of scaffold-free biofabrication. Collectively, we anticipate that combinations of these complementary methods in a “hybrid” approach, rather than their development in separate technological niches, will largely increase their efficiency and applicability in tissue engineering
Comparison of Biomaterial-Dependent and -Independent Bioprinting Methods for Cardiovascular Medicine
There is an increasing need of human organs for transplantation, of alternatives to animal experimentation, and of better in vitro tissue models for drug testing. All these needs create unique opportunities for the development of novel and powerful tissue engineering methods, among which the 3D bioprinting is one of the most promising. However, after decades of incubation, ingenuous efforts, early success and much anticipation, biomaterial-dependent 3D bioprinting, although shows steady progress, is slow to deliver the expected clinical results. For this reason, alternative ‘scaffold-free’ 3D bioprinting methods are developing in parallel at an accelerated pace. In this opinion paper we discuss comparatively the two approaches, with specific examples drawn from the cardiovascular field. Moving the emphasis away from competition, we show that the two platforms have similar goals but evolve in complementary technological niches. We conclude that the biomaterial-dependent bioprinting is better suited for tasks requiring faster, larger, anatomically-true, cell-homogenous and matrix-rich constructs, while the scaffold-free biofabrication is more adequate for cell-heterogeneous, matrix-poor, complex and smaller constructs, but requiring longer preparation time
Labeling of endothelial cells with magnetic microbeads by angiophagy
Objectives
Attachment of magnetic particles to cells is needed for a variety of applications but is not always possible or efficient. Simpler and more convenient methods are thus desirable. In this study, we tested the hypothesis that endothelial cells (EC) can be loaded with micron-size magnetic beads by the phagocytosis-like mechanism ‘angiophagy’. To this end, human umbilical vein EC (HUVEC) were incubated with magnetic beads conjugated or not (control) with an anti-VEGF receptor 2 antibody, either in suspension, or in culture followed by re-suspension using trypsinization.
Results
In all conditions tested, HUVEC incubation with beads induced their uptake by angiophagy, which was confirmed by (i) increased cell granularity assessed by flow cytometry, and (ii) the presence of an F-actin rich layer around many of the intracellular beads, visualized by confocal microscopy. For confluent cultures, the average number of beads per cell was 4.4 and 4.2, with and without the presence of the anti-VEGFR2 antibody, respectively. However, while the actively dividing cells took up 2.9 unconjugated beads on average, this number increased to 5.2 if binding was mediated by the antibody. Magnetic pulldown increased the cell density of beads-loaded cells in porous electrospun poly-capro-lactone scaffolds by a factor of 4.5 after 5 min, as compared to gravitational settling (p < 0.0001).
Conclusion
We demonstrated that EC can be readily loaded by angiophagy with micron-sized beads while attached in monolayer culture, then dispersed in single-cell suspensions for pulldown in porous scaffolds and for other applications
iPSC-Derived Vascular Cell Spheroids as Building Blocks for Scaffold-Free Biofabrication
Recently a protocol is established to obtain large quantities of human induced pluripotent stem cells (iPSC)-derived endothelial progenitors, called endothelial colony forming cells (ECFC), and of candidate smooth-muscle forming cells (SMFC). Here, the suitability for assembling in spheroids, and in larger 3D cell constructs is tested. iPSC-derived ECFC and SMFC are labeled with tdTomato and eGFP, respectively. Spheroids are formed in ultra-low adhesive wells, and their dynamic proprieties are studied by time-lapse microscopy, or by confocal microscopy. Spheroids are also tested for fusion ability either in the wells, or assembled on the Regenova 3D bioprinter which laces them in stainless steel micro-needles (the “Kenzan” method). It is found that both ECFC and SMFC formed spheroids in about 24 h. Fluorescence monitoring indicated a continuous compaction of ECFC spheroids, but stabilization in those prepared from SMFC. In mixed spheroids, the cell distribution changed continuously, with ECFC relocating to the core, and showing pre-vascular organization. All spheroids have the ability of in-well fusion, but only those containing SMFC are robust enough to sustain assembling in tubular structures. In these constructs a layered distribution of alpha smooth muscle actin-positive cells and extracellular matrix deposition is found. In conclusion, iPSC-derived vascular cell spheroids represent a promising new cellular material for scaffold-free biofabrication
A Bioinformatics-Based Bottom-up Network Reconstruction Approach to Detect Stem Cell-Related Blood Biomarkers of Cardiovascular Damage and Repair
Health Professions - Laboratory/Cellular: 3rd Place (The Ohio State University Denman Undergraduate Research Forum)In peripheral blood there are very rare circulating stem/progenitor cells (CSPCs) with primitive characters and the capacity to differentiate into cardiovascular and other lineages. These cells are promising biomarkers of the organism’s resilience and of its ability to repair injuries. However, because of its complexity, the system of CSPCs has not yet been described by traditional methods in a coherent and simple enough manner to be clinically useful. In response to this limitation, we proposed the CSPC system could be directly assessed by gene expression analysis of peripheral blood mononuclear cells (PBMCs). Initially, 45 genes representing the most used markers of primitivity and differentiation were tested. Among these, 15 genes were organized as a module of the blood transcriptional network which inversely depended on age, blood pressure, and vascular stiffness of donors, as expected from CSPCs. To identify more members of this module, we analyzed 503 Affymetrix microarrays from public databases hybridized with RNA of normal human PBMCs from children (where the primitive genes were better expressed), adults, and burn victims (a response to an injury condition that is preferable to actual cardiovascular patients because of the lack of other risk factors which complicate the interpretation). Normalized data was analyzed by the bioinformatics co-variation method known as “guilt-by-association”. This approach identified 107 potential candidates from data collected from microarrays on healthy children, many having known roles associated with stemness, differentiation, angiogenesis, and/or cardiovascular diseases or repair. A larger study on adults was conducted, as well as studies involving burn injury (that induces massive mobilization of CSPCs) and pregnant women suffering from preeclampsia (a condition due to deficiencies in CSPCs), for comparison. In conclusion, we show how to expand a new, collective, systemic biomarker for the elusive CSPCs that could be used to track their response to injury and to identify patients at risk for developing, or already experiencing, cardiovascular diseases.Arts and Sciences Honors Undergraduate Research ScholarshipAcademic Major: BiologyAcademic Major: Electrical and Computer EngineeringAcademic Major: Neuroscienc
Adeno-Associated Virus Overexpression of Angiotensin-Converting Enzyme-2 Reverses Diabetic Retinopathy in Type 1 Diabetes in Mice
Angiotensin-converting enzyme (ACE)-2 is the primary enzyme of the vasoprotective axis of the renin angiotensin system that regulates the classic renin angiotensin system axis. We aimed to determine whether local retinal overexpression of adenoassociated virus (AAV)-ACE2 prevents or reverses diabetic retinopathy. Green fluorescent protein (GFP)-chimeric mice were generated to distinguish resident (retinal) from infiltrating bone marrow-derived inflammatory cells and were made diabetic using streptozotocin injections. Retinal digestion using trypsin was performed and acellular capillaries enumerated. Capillary occlusion by GFP(+) cells was used to measure leukostasis. Overexpression of ACE2 prevented (prevention cohort: untreated diabetic, 11.3 ± 1.4; ACE2 diabetic, 6.4 ± 0.9 per mm(2)) and partially reversed (reversal cohort: untreated diabetic, 15.7 ± 1.9; ACE2 diabetic, 6.5 ± 1.2 per mm(2)) the diabetes-associated increase of acellular capillaries and the increase of infiltrating inflammatory cells into the retina (F4/80(+)) (prevention cohort: untreated diabetic, 24.2 ± 6.7; ACE2 diabetic, 2.5 ± 1.6 per mm(2); reversal cohort: untreated diabetic, 56.8 ± 5.2; ACE2 diabetic, 5.6 ± 2.3 per mm(2)). In both study cohorts, intracapillary bone marrow-derived cells, indicative of leukostasis, were only observed in diabetic animals receiving control AAV injections. These results indicate that diabetic retinopathy, and possibly other diabetic microvascular complications, can be prevented and reversed by locally restoring the balance between the classic and vasoprotective renin angiotensin system
Bone Marrow–Derived Cell Recruitment to the Neurosensory Retina and Retinal Pigment Epithelial Cell Layer Following Subthreshold Retinal Phototherapy
Purpose
We investigated whether subthreshold retinal phototherapy (SRPT) was associated with recruitment of bone marrow (BM)–derived cells to the neurosensory retina (NSR) and RPE layer.
Methods
GFP chimeric mice and wild-type (WT) mice were subjected to SRPT using a slit-lamp infrared laser. Duty cycles of 5%, 10%, 15%, and 20% (0.1 seconds, 250 mW, spot size 50 μm) with 30 applications were placed 50 to 100 μm from the optic disc. In adoptive transfer studies, GFP+ cells were given intravenously immediately after WT mice received SRPT. Immunohistochemistry was done for ionized calcium-binding adapter molecule-1 (IBA-1+), CD45, Griffonia simplicifolia lectin isolectin B4, GFP or cytokeratin). Expression of Ccl2, Il1b, Il6, Hspa1a, Hsp90aa1, Cryab, Hif1a, Cxcl12, and Cxcr4 mRNA and flow cytometry of the NSR and RPE-choroid were performed.
Results
Within 12 to 24 hours of SRPT, monocytes were detected in the NSR and RPE-choroid. Detection of reparative progenitors in the RPE occurred at 2 weeks using flow cytometry. Recruitment of GFP+ cells to the RPE layer occurred in a duty cycle–dependent manner in chimeric mice and in mice undergoing adoptive transfer. Hspa1a, Hsp90aa1, and Cryab mRNAs increased in the NSR at 2 hours post laser; Hif1a, Cxcl12, Hspa1a increased at 4 hours in the RPE-choroid; and Ccl2, Il1b, Ifng, and Il6 increased at 12 to 24 hours in the RPE-choroid.
Conclusions
SRPT induces monocyte recruitment to the RPE followed by hematopoietic progenitor cell homing at 2 weeks. Recruitment occurs in a duty cycle–dependent manner and potentially could contribute to the therapeutic efficacy of SRPT
Impact of The Protective Renin-Angiotensin System (RAS) on The Vasoreparative Function of CD34+ CACs in Diabetic Retinopathy
Purpose: In diabetes, the impaired vasoreparative function of Circulating Angiogenic Cells (CACs) is believed to contribute to the progression of diabetic retinopathy (DR). Accumulating evidence suggests that the protective arm of renin-angiotensin system (RAS) ACE2 Angiotensin-(1-7) Mas plays an important role in restoring the function of diabetic CACs. We examined the protective RAS in CACs in diabetic individuals with different stages of retinopathy. Methods: Study subjects (n43) were recruited as controls or diabetics with either no DR, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR or proliferative DR (PDR). Fundus photography and fluorescein angiograms were analyzed using Vessel Generation Analysis (VESGEN) software in a cohort of subjects. CD34+ CACs were isolated from peripheral blood of diabetics and control subjects. RAS gene expressions in CACs were measured by qPCR. The vasoreparative function of CACs was assessed by migration ability toward CXCL12 using the QCM 5M 96-well chemotaxis cell migration assay. Results: ACE2 gene is a key enzyme converting the deleterious Angiotensin II to the beneficial Angiotensin-(1-7). ACE2 expression in CACs from diabetic subjects without DR was increased compared to controls, suggestive of compensation (p0.0437). The expression of Mas (Angiotensin-(1-7) receptor) in CACs was also increased in diabetics without DR, while was reduced in NPDR compared to controls (p0.0002), indicating a possible loss of compensation of the protective RAS at this stage of DR. The presence of even mild NPDR was associated with CD34+ CAC migratory dysfunction. When pretreating CACs of DR subjects with Angiotensin-(1-7), migratory ability to a chemoattractant CXCL12 was restored (p0.0008). By VESGEN analysis, an increase in small vessel density was observed in NPDR subjects when compared with the controls. Conclusions: These data suggest the protective RAS axis within diabetic CACs may help maintain their vasoreparative potential. The VESGEN analysis supports the presence of retinal repair in small vessels. The loss of the protective arm of RAS may predict the progression of DR
- …