12 research outputs found

    Electrospraying technique for the fabrication of metronidazole contained PLGA particles and their release profile

    Get PDF
    Advanced engineering of materials for the development of drug delivery devices provides scope for novel and versatile strategies for treatment of various diseases. 'Electrospraying' was used to prepare PLGA microparticles and further encapsulate the drug, metronidazole (Met) within the particles to function as a drug delivery system. Two different solvents were utilized for the preparation of drug loaded PLGA particles, whereby the polymeric solution in dichloromethane (DCM) produced particles of bigger sizes than using trifluoroethanol (TFE). Scanning electron microscopy showed the spherical morphology of the particles, with sizes of 3946 ± 407 nm and 1774 ± 167 nm, respectively for PLGA-Met(DCM) and PLGA-Met(TFE). The FTIR spectroscopy proved the incorporation of metronidazole in the polymer, but without any specific drug-polymer interaction. The release of the drug from the particles was studied in phosphate buffered saline, where a sustained drug release was obtained for at least 41 days. Cytotoxicity evaluation of the drug extract using mesenchymal stem cells (MSCs) showed not hindering the proliferation of MSCs, and the cell phenotype was retained after incubation in the drug containing media. Electrospraying is suggested as a cost-effective and single step process for the preparation of polymeric microparticles for prolonged and controlled release of drug.Fil: Prabhakaran, Molamma P.. National University Of Singapore; SingapurFil: Zamani, Maedeh. National University Of Singapore; SingapurFil: Felice, Betiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Ramakrishna, Seeram. National University Of Singapore; Singapu

    Emulsion electrospinning of polycaprolactone: Influence of surfactant type towards the scaffold properties

    No full text
    10.1080/09205063.2014.982241Journal of Biomaterials Science, Polymer Edition26157-7

    Electrosprayed poly(vinyl alcohol) particles: preparation and evaluation of their drug release profile

    Get PDF
    Encapsulation of bioactive molecules within polymeric particles is a challenge, due to several limitations including low drug-loading efficiency, unwanted release profile, polydispersity and batch to batch variation in reproducibility, along with the limitations to scale up the process. It is essential to control the morphology of pure polymer particles in the first instance, in order to obtain the desired release profile of the drugs from the particles during the later stage. Here, we present the preparation of electrosprayed particles from water soluble FDA-approved polymer, namely polyvinyl alcohol (PVA) as an approach towards short-term drug delivery vehicle. Through electrospraying and varying the solvent ratios, three different sizes of particles were prepared, with sizes ranging from 500 to 2000 nm. Insulin was chosen as a model bioactive molecule, and the release profile of the drug was studied after incorporation in PVA particles. Fractional release plots obtained showed short-term release of insulin, within the first 60 minutes. Release curves were analyzed according to Ritger-Peppas model, suggesting Fickian diffusion as the predominant insulin release mechanism from PVA particles. This work suggests electrosprayed PVA particles as an innovative drug delivery system for short-term administration of drugs.Fil: Felice, Betiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; ArgentinaFil: Prabhakaran, Molamma P.. National University of Singapore; SingapurFil: Zamani, Maedeh. National University of Singapore; SingapurFil: Rodriguez, Andrea Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; ArgentinaFil: Ramakrishna, Seeram. National University of Singapore; Singapu
    corecore