22 research outputs found

    Aortic stiffness in aortic stenosis assessed by cardiovascular MRI: a comparison between bicuspid and tricuspid valves

    Get PDF
    Objectives To compare aortic size and stiffness parameters on MRI between bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV) patients with aortic stenosis (AS). Methods MRI was performed in 174 patients with asymptomatic moderate-severe AS (mean AVAI 0.57 ± 0.14 cm2/m2) and 23 controls on 3T scanners. Valve morphology was available/analysable in 169 patients: 63 BAV (41 type-I, 22 type-II) and 106 TAV. Aortic cross-sectional areas were measured at the level of the pulmonary artery bifurcation. The ascending and descending aorta (AA, DA) distensibility, and pulse wave velocity (PWV) around the aortic arch were calculated. Results The AA and DA areas were lower in the controls, with no difference in DA distensibility or PWV, but slightly lower AA distensibility than in the patient group. With increasing age, there was a decrease in distensibility and an increase in PWV. After correcting for age, the AA maximum cross-sectional area was higher in bicuspid vs. tricuspid patients (12.97 [11.10, 15.59] vs. 10.06 [8.57, 12.04] cm2, p < 0.001), but there were no significant differences in AA distensibility (p = 0.099), DA distensibility (p = 0.498) or PWV (p = 0.235). Patients with BAV type-II valves demonstrated a significantly higher AA distensibility and lower PWV compared to type-I, despite a trend towards higher AA area. Conclusions In patients with significant AS, BAV patients do not have increased aortic stiffness compared to those with TAV despite increased ascending aortic dimensions. Those with type-II BAV have less aortic stiffness despite greater dimensions. These results demonstrate a dissociation between aortic dilatation and stiffness and suggest that altered flow patterns may play a role. Key Points • Both cellular abnormalities secondary to genetic differences and abnormal flow patterns have been implicated in the pathophysiology of aortic dilatation and increased vascular complications associated with bicuspid aortic valves (BAV). • We demonstrate an increased ascending aortic size in patients with BAV and moderate to severe AS compared to TAV and controls, but no difference in aortic stiffness parameters, therefore suggesting a dissociation between dilatation and stiffness. • Sub-group analysis showed greater aortic size but lower stiffness parameters in those with BAV type-II AS compared to BAV type-I

    Innovation meets change: Improving the spatial temporal abilities of students in grades K–3

    No full text
    Improvement programs, teaching pedagogies, and other innovations introduced to educators have often met with resistance, even if the innovation is supported by research. Explanations for resistance to change and innovation are complex and have originated with the educational community as well as outside sources. This study evaluated the implementation of a piano-keyboarding program labeled as innovative in a K–12 public school using the research from Dr. John Kotter on change and Diffusion Theory by Everett Rogers. The evaluation compared local test data collected by a small, rural, public school district with national norms using the Cognitive Abilities Test as the primary instrument. The hypothesis that piano keyboarding instruction would demonstrate significant improvement of the local mean differences over the national norms was supported. The school district provided two piano keyboarding lessons, 20 minutes in duration on a 6-day rotation to students in grades K–3 (n = 134) throughout the school year. The district utilized research conducted by Dr. Francis Rauscher using pre-school children and the piano keyboard. The results of the 3-year study found that every grade level, K-3, showed significant improvement when compared to the Cognitive Abilities Test Form 5 nationally normed scores. The most dramatic score increases occurred in Kindergarten

    A quasi-static model of drop impact

    No full text
    We develop a conceptually simple theoretical model of non-wetting drop impact on a rigid surface at small Weber numbers. Flat and curved impactor surfaces are considered, and the influence of surface curvature is elucidated. Particular attention is given to characterizing the contact time of the impact and the coefficient of restitution, the goal being to provide a reasonable estimate for these two parameters with the simplest model possible. Approximating the shape of the drop during impact as quasi-static allows us to derive the governing differential equation for the droplet motion from a Lagrangian. Predictions of the resulting model are shown to compare favorably with previously reported experimental results

    The fine art of surfacing: Its efficacy in broadcast spawning

    No full text
    Many organisms reproduce by releasing gametes into the surrounding fluid. For some such broadcast spawners, gametes are positively or negatively buoyant, and, as a result, fertilization occurs on a two-dimensional surface rather than in the bulk of the air or water. We here rationalize this behaviour by considering the encounter rates of gametes on the surface and in the fluid bulk. The advantage of surfacing is quantified by considering an infinitely wide body of water of constant depth. Differential loss rates at the surface and in the bulk are considered and their influence on the robustness of surface search assessed. For small and moderate differential loss rates, the advantage of surfacing is very robust and significant; only for large loss rate differences can the advantage of surfacing be nullified

    The wave-induced added mass of walking droplets

    No full text
    It has recently been demonstrated that droplets walking on a vibrating fluid bath exhibit several features previously thought to be peculiar to the microscopic realm. The walker, consisting of a droplet plus its guiding wavefield, is a spatially extended object. We here examine the dependence of the walker mass and momentum on its velocity. Doing so indicates that, when the walker’s time scale of acceleration is long relative to the wave decay time, its dynamics may be described in terms of the mechanics of a particle with a speed-dependent mass and a nonlinear drag force that drives it towards a fixed speed. Drawing an analogy with relativistic mechanics, we define a hydrodynamic boost factor for the walkers. This perspective provides a new rationale for the anomalous orbital radii reported in recent studies

    Orbiting pairs of walking droplets: Dynamics and stability

    No full text
    A decade ago, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] discovered that a millimetric droplet sustained on the surface of a vibrating fluid bath may self-propel through a resonant interaction with its own wave field. We here present the results of a combined experimental and theoretical investigation of the interactions of such walking droplets. Specifically, we delimit experimentally the different regimes for an orbiting pair of identical walkers and extend the theoretical model of Oza et al. [J. Fluid Mech. 737, 552 (2013)] in order to rationalize our observations. A quantitative comparison between experiment and theory highlights the importance of spatial damping of the wave field. Our results also indicate that walkers adapt their impact phase according to the local wave height, an effect that stabilizes orbiting bound states

    In situ cloud particle tracking experiment

    No full text
    The collision–coalescence process of inertial particles in turbulence is held responsible for the quick growth of cloud droplets from ∼15 to ∼50 µm in diameter, but it is not well understood. Turbulence has two effects on cloud droplets: (1) it brings them closer together, preferentially concentrating them in certain parts of the flow, and (2) it sporadically creates high accelerations, causing droplets to detach from the underlying flow. These turbulence–cloud droplet interactions are difficult to study numerically or in the laboratory due to the large range of scales involved in atmospheric turbulence, so in situ measurements are needed. Here, we present a Lagrangian particle tracking (LPT) experimental setup situated close to the summit of Mt. Zugspitze at an altitude of 2650 m above the sea level on top of the environmental research station Schneefernerhaus. Clouds naturally occur at this location about a quarter of the time. The LPT experiment probes a volume of ∼40 × 20 × 12 mm3, has a spatial resolution of 5 µm and a temporal resolution of 0.1 ms, and measures accelerations to within 0.1 m s−2. Furthermore, the experiment can slide over a set of rails, driven by a linear motor, to compensate for the mean wind. It can slide up to 7.5 m s−1. By doing so, the average residence time of the particles in the measurement volume increases. The mean wind compensation allows us to study various dynamical quantities, such as the velocity autocorrelation, or the dynamics of clustering. Moreover, it is beneficial for particle tracking, in general, since longer particle tracks allow us to apply better filtering to the tracks and thus increase accuracy. We present the radial distribution function, which quantifies clustering, the longitudinal relative velocity distribution, and the Lagrangian velocity autocorrelation, all computed from cloud droplet trajectories

    Cloud microphysical measurements at a mountain observatory: comparison between shadowgraph imaging and phase Doppler interferometry

    No full text
    The microphysical properties of cloud droplets, such as droplet size distribution and droplet number concentration, were studied. A series of field experiments was performed in the summer of 2019 at the Umweltforschungsstation Schneefernerhaus (UFS), an environmental research station located just below the peak of the Zugspitze mountain in the German Alps. A VisiSize D30 manufactured by Oxford Laser Ltd., which is a shadowgraph imaging instrument, was utilized for the first time to measure the size and velocity of cloud droplets during this campaign. Furthermore, a phase Doppler interferometer (PDI) device, manufactured by Artium Tech. Inc., was simultaneously measuring cloud droplets. After applying modifications to the built-in software algorithms, the results from the two instruments show reasonable agreement regarding droplet sizing and velocimetry for droplet diameters larger than 13 µm. Moreover, discrepancies were observed concerning the droplet number concentration results, especially with smaller droplet sizes. Further investigation by applying appropriate filters to the data allowed the attribution of the discrepancies to two phenomena: the different optical performance of the sensors with regard to small droplets and high turbulent velocity fluctuations relative to the mean flow that result in an uncertain estimate of the volume of air passing through the PDI probe volume

    Observation of aerodynamic instability in the flow of a particle stream in a dilute gas

    No full text
    Forming macroscopic solid bodies in circumstellar discs requires local dust concentration levels significantly higher than the mean. Interactions of the dust particles with the gas must serve to augment local particle densities, and facilitate growth past barriers in the metre size range. Amongst a number of mechanisms that can amplify the local density of solids, aerodynamic streaming instability (SI) is one of the most promising. This work tests the physical assumptions of models that lead to SI in protoplanetary discs (PPDs). We conduct laboratory experiments in which we track the three-dimensional motion of spherical solid particles fluidised in a low-pressure, laminar, incompressible, gas stream. The particle sizes span the Stokes-Epstein drag regime transition and the overall dust-to-gas mass density ratio, epsilon, is close to unity. A recently published study establishes the similarity of the laboratory flow to a simplified PPD model flow. We study velocity statistics and perform time-series analysis of the advected flow to obtain experimental results suggesting an instability due to particle-gas interaction: (i) there exist variations in particle concentration in the direction of the mean relative motion between the gas and the particles, that is the direction of the mean drag forces; (ii) the particles have a tendency to "catch up" to one another when they are in proximity; (iii) particle clumping occurs on very small scales, which implies local enhancements above the background epsilon by factors of several tens; (iv) the presence of these density enhancements occurs for a mean epsilon approaching or greater than 1; (v) we find evidence for collective particle drag reduction when the local particle number density becomes high and when the background gas pressure is high so that the drag is in the continuum regime. The experiments presented here are precedent-setting for observing SI under controlled conditions and may lead to a deeper understanding of how it operates in nature
    corecore