839 research outputs found

    A Conceptual Framework for Knowledge Management Implementation in Organizations

    Get PDF
    This study aimed to identify the processes associated with knowledge management implementation and develop a framework with different stages that combines these processes to guide the initiative for implementing knowledge management in organizations. The study was approached from a theoretical perspective. The study contributes to the knowledge management literature by developing a conceptual framework of knowledge management. A comprehensive review was conducted of recent progress and the rapidly growing number of published studies on knowledge management implementation. The review revealed ten critical processes that should be considered to ensure successful knowledge management initiatives. Based on that, a framework for knowledge management implementation is proposed. Specifically, the processes associated with implementing knowledge management are logically distributed among the PDCA framework promulgated and reflecting the four domains of the Plan–Do–Check–Act, which has consistently shown the capability to encompass all processes of effective knowledge management implementation. The framework can be used as a reference for implementing knowledge management initiatives in organizations. Finally, this study emphasizes that continuous process methods are significant in implementing knowledge management initiatives. By placing knowledge management implementation processes in the PDCA cycle, task-based knowledge can be better recognized and understood

    An improved moth flame optimization algorithm based on rough sets for tomato diseases detection

    Get PDF
    Plant diseases is one of the major bottlenecks in agricultural production that have bad effects on the economic of any country. Automatic detection of such disease could minimize these effects. Features selection is a usual pre-processing step used for automatic disease detection systems. It is an important process for detecting and eliminating noisy, irrelevant, and redundant data. Thus, it could lead to improve the detection performance. In this paper, an improved moth-flame approach to automatically detect tomato diseases was proposed. The moth-flame fitness function depends on the rough sets dependency degree and it takes into a consideration the number of selected features. The proposed algorithm used both of the power of exploration of the moth flame and the high performance of rough sets for the feature selection task to find the set of features maximizing the classification accuracy which was evaluated using the support vector machine (SVM). The performance of the MFORSFS algorithm was evaluated using many benchmark datasets taken from UCI machine learning data repository and then compared with feature selection approaches based on Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) with rough sets. The proposed algorithm was then used in a real-life problem, detecting tomato diseases (Powdery mildew and early blight) where a real dataset of tomato disease were manually built and a tomato disease detection approach was proposed and evaluated using this dataset. The experimental results showed that the proposed algorithm was efficient in terms of Recall, Precision, Accuracy and F-Score, as long as feature size reduction and execution time

    Deeper discussion of Schr\"odinger invariant and Logarithmic sectors of higher-curvature gravity

    Get PDF
    The aim of this paper is to explore D-dimensional theories of pure gravity whose space of solutions contains certain class of AdS-waves, including in particular Schrodinger invariant spacetimes. This amounts to consider higher order theories, and the natural case to start with is to analyze generic square-curvature corrections to Einstein-Hilbert action. In this case, the Schrodinger invariant sector in the space of solutions arises for a special relation between the coupling constants appearing in the action. On the other hand, besides the Schrodinger invariant configurations, logarithmic branches similar to those of the so-called Log-gravity are also shown to emerge for another special choice of the coupling constants. These Log solutions can be interpreted as the superposition of the massless mode of General Relativity and two scalar modes that saturate the Breitenlohner-Freedman bound (BF) of the AdS space on which they propagate. These solutions are higher-dimensional analogues of those appearing in three-dimensional massive gravities with relaxed AdS_3 asymptotic. Other sectors of the space of solutions of higher-curvature theories correspond to oscillatory configurations, which happen to be below the BF bound. Also, there is a fully degenerated sector, for which any wave profile is admitted. We comment on the relation between this degeneracy and the non-renormalization of the dynamical exponent of the Schrodinger spaces. Our analysis also includes more general gravitational actions with non-polynomial corrections consisting of arbitrary functions of the square-curvature invariants. The same sectors of solutions are shown to exist for this more general family of theories. We finally consider the Chern-Simons modified gravity in four dimensions, for which we derive both the Schrodinger invariant as well as the logarithmic sectors.Comment: This paper is dedicated to the memory of Laurent Houar

    A synopsis on the effects of anthropogenic greenhouse gases emissions from power generation and energy consumption

    Get PDF
    Despite the looming difficult energy context in the majority of countries in the world, global change in environmental dignity resulting from power generation and energy consumption scenario is rapidly becoming a globally disturbing phenomenon. Stakeholders and environmental activists alike have been clamouring for adoption of reduction procedures using sustainable means because ignominious environmental practices have associated disastrous consequences. Increasing essential strategies are needed to fortify the pursuit for the reduction in the emissions from power generation and energy consumption. Therefore, this article presents an overview of the effects of anthropogenic energy generation and consumption practices capable of ejecting emissions of greenhouse gases into the atmosphere. It also endeavors to identify some greenhouse gas emission reduction and control measures

    Bending AdS Waves with New Massive Gravity

    Get PDF
    We study AdS-waves in the three-dimensional new theory of massive gravity recently proposed by Bergshoeff, Hohm, and Townsend. The general configuration of this type is derived and shown to exhibit different branches, with different asymptotic behaviors. In particular, for the special fine tuning m2=±1/(2l2)m^2=\pm1/(2l^2), solutions with logarithmic fall-off arise, while in the range m2>1/(2l2)m^2>-1/(2l^2), spacetimes with Schrodinger isometry group are admitted as solutions. Solutions that are asymptotically AdS3_3, both for Brown-Henneaux and for the weakened boundary conditions, are also identified. The metric function that characterizes the profile of the AdS-wave behaves as a massive excitation on the spacetime, with an effective mass given by meff2=m21/(2l2)m_{eff}^2=m^2-1/(2l^2). For the critical value m2=1/(2l2)m^2=-1/(2l^2), the value of the effective mass precisely saturates the Breitenlohner-Freedman bound for the AdS3_3 space where the wave is propagating on. The analogies with the AdS-wave solutions of topologically massive gravity are also discussed. Besides, we consider the coupling of both massive deformations to Einstein gravity and find the exact configurations for the complete theory, discussing all the different branches exhaustively. One of the effects of introducing the Chern-Simons gravitational term is that of breaking the degeneracy in the effective mass of the generic modes of pure New Massive Gravity, producing a fine structure due to parity violation. Another effect is that the zoo of exact logarithmic specimens becomes considerably enlarged.Comment: 9 pages. Minor typos correcte

    Sparsity-Based Joint NBI and impulse noise mitigation in hybrid PLC-Wireless transmissions

    Get PDF
    We propose a new sparsity-aware framework to model and mitigate the joint effects of narrow-band interference (NBI) and impulsive noise (IN) in hybrid powerline and unlicensed wireless communication systems. The proposed mitigation techniques, based on the principles of compressive sensing, exploit the inherent (non-contiguous or contiguous) sparse structures of NBI and IN in the frequency and time domains, respectively. For the non-contiguous NBI and IN, we develop a multi-level orthogonal matching pursuit recovery algorithm that exploits prior knowledge about the sparsity level at each receive antenna and powerline to further reduce computational complexity without performance loss. In addition, for the non-contiguous asynchronous NBI scenario, we investigate the application of time-domain windowing to enhance the NBI's sparsity and, hence, improve the NBI mitigation performance. For the contiguous NBI and IN scenario, we estimate the NBI and IN signals by modeling their burstiness as block-sparse vectors with and without prior knowledge of the bursts' boundaries. Moreover, we show how to exploit the spatial correlations of the NBI and IN across the receive antennas and powerlines to convert a non-contiguous NBI and IN problem to a block-sparse estimation problem with much lower complexity. Furthermore, we investigate a Bayesian linear minimum mean square error-based approach for estimating both non-contiguous and contiguous NBI and IN based on their second-order statistics to further improve the estimation performance. Finally, our numerical results illustrate the superiority of the joint processing of our proposed NBI and IN sparsity-based mitigation techniques compared to separate processing of the wireless and powerline received signals. 2013 IEEE.This work was supported by NPRP through the Qatar National Research Fund (a member of Qatar Foundation) under Grant NPRP 8-627-2-260.Scopu

    Mathematics teachers' level of knowledge and practice on the implementation of higher-order thinking skills (HOTS)

    Get PDF
    This study aims to identify the level of knowledge and practice on the implementation of higher-order thinking skills (HOTS) among mathematics teachers at a secondary school in the district of Terengganu. The study focused on the aspects of curriculum, pedagogy and assessment and compared them with demographic factors of the respondents. It used the quantitative approach and adopted descriptive survey method involving 196 respondents. Also, inferential analysis was conducted using Pearson correlation and Multivariate Analysis of Variance Test (MANOVA). The findings showed that the level of knowledge and practice of the assessment aspect was the weakest. Also, there was a relationship between the level of knowledge and practice of HOTS in each aspect. Significant differences exist in the level of knowledge and practice in the implementation of HOTS based on demographic factors such as gender, the location of school and exposure in the HOTS course

    Nanometal dust explosion in confined vessel: combustion and kinetic analysis

    Get PDF
    Extensive application of metal powder, particularly in nanosize could potentially lead to catastrophic dust explosion, due to their pyrophoric behavior, ignition sensitivity, and explosivity. To assess the appropriate measures preventing accidental metal dust explosions, it is vital to understand the physicochemical properties of the metal dust and their kinetic mechanism. In this work, explosion severity of aluminum and silver powder, which can be encountered in a passivated emitter and rear contact (PERC) solar cell, was explored in a 0.0012 m3 cylindrical vessel, by varying the particle size and powder concentration. The Pmax and dP/dtmax values of metal powder were demonstrated to increase with decreasing particle size. Additionally, it was found that the explosion severity of silver powder was lower than that of aluminum powder due to the more apparent agglomeration effect of silver particles. The reduction on the specific surface area attributed to the particles' agglomeration affects the oxidation reaction of the metal powder, as illustrated in the thermogravimetric (TG) curves. A sluggish oxidation reaction was demonstrated in the TG curve of silver powder, which is contradicted with aluminum powder. From the X-ray photoelectron spectroscopy (XPS) analysis, it is inferred that silver powder exhibited two reactions in which the dominant reaction produced Ag and the other reaction formed Ag2O. Meanwhile, for aluminum powder, explosion products only comprise Al2O3
    corecore