13 research outputs found

    Integrating perspectives in actinomycete research: an ActinoBase review of 2020-21

    Get PDF
    Last year ActinoBase, a Wiki-style initiative supported by the UK Microbiology Society, published a review highlighting the research of particular interest to the actinomycete community. Here, we present the second ActinoBase review showcasing selected reports published in 2020 and early 2021, integrating perspectives in the actinomycete field. Actinomycetes are well-known for their unsurpassed ability to produce specialised metabolites, of which many are used as therapeutic agents with antibacterial, antifungal, or immunosuppressive activities. Much research is carried out to understand the purpose of these metabolites in the environment, either within communities or in host interactions. Moreover, many efforts have been placed in developing computational tools to handle big data, simplify experimental design, and find new biosynthetic gene cluster prioritisation strategies. Alongside, synthetic biology has provided advances in tools to elucidate the biosynthesis of these metabolites. Additionally, there are still mysteries to be uncovered in understanding the fundamentals of filamentous actinomycetes' developmental cycle and regulation of their metabolism. This review focuses on research using integrative methodologies and approaches to understand the bigger picture of actinomycete biology, covering four research areas: i) technology and methodology; ii) specialised metabolites; iii) development and regulation; and iv) ecology and host interactions

    ActDES- a Curated Actinobacterial Database for Evolutionary Studies

    Get PDF
    Actinobacteria is a large and diverse phylum of bacteria that contains medically and ecologically relevant organisms. Many members are valuable sources of bioactive natural products and chemical precursors that are exploited in the clinic and made using the enzyme pathways encoded in their complex genomes. Whilst the number of sequenced genomes has increased rapidly in the last 20 years, the large size, complexity and high G+C content of many actinobacterial genomes means that the sequences remain incomplete and consist of large numbers of contigs with poor annotation, which hinders large-scale comparative genomic and evolutionary studies. To enable greater understanding and exploitation of actinobacterial genomes, specialized genomic databases must be linked to high-quality genome sequences. Here, we provide a curated database of 612 high-quality actinobacterial genomes from 80 genera, chosen to represent a broad phylogenetic group with equivalent genome re-annotation. Utilizing this database will provide researchers with a framework for evolutionary and metabolic studies, to enable a foundation for genome and metabolic engineering, to facilitate discovery of novel bioactive therapeutics and studies on gene family evolution. This article contains data hosted by Microreact

    Expanding Primary Metabolism Helps Generate the Metabolic Robustness To Facilitate Antibiotic Biosynthesis in Streptomyces

    Get PDF
    Abstract The expansion of the genetic repertoire of an organism by gene duplication or horizontal gene transfer (HGT) can aid adaptation. Streptomyces bacteria are prolific producers of bioactive specialized metabolites that have adaptive functions in nature and have found extensive utility in human medicine. Whilst the biosynthesis of these specialized metabolites is directed by dedicated biosynthetic gene clusters, little attention has been focussed on how these organisms have evolved robustness into their genomes to facilitate the metabolic plasticity required to provide chemical precursors for biosynthesis during the complex metabolic transitions from vegetative growth to specialized metabolite production and sporulation. Here we examine genetic redundancy in Actinobacteria and show that specialised metabolite producing bacterial families exhibit gene family expansion in primary metabolism. Focussing on a gene duplication event we show that the two pyruvate kinases in the genome of S. coelicolor arose by an ancient duplication event and that each have evolved altered enzymatic kinetics, with Pyk1 having a 20-fold higher Kcat than Pyk2 (4703 sec-1 compared to 215 sec-1 respectively) yet both are constitutively expressed. The pyruvate kinase mutants were also found to be compromised in terms of fitness when compared to wild-type Streptomyces. These data suggest that expanding gene familes can help maintain cell functionality during metabolic perturbation such as nutrient limitation and/or specialized metabolite production. Importance The rise of antimicrobial resistant infections has prompted a resurgence in interest in understanding the production of specialized metabolites by Streptomyces such as antibiotics. The presence of multiple genes encoding the same enzymatic function is an aspect of Streptomyces biology that has received little attention, however understanding how the metabolic expansion influences these organisms can help enhance production of clinically useful molecules. Here we show that expanding the number of pyruvate kinases enables metabolic adaptation, increases strain fitness and represents an excellent target for metabolic engineering of industrial specialized metabolite producing bacteria and the activation of cryptic specialized metabolites

    Biosynthetic gene profiling and genomic potential of the novel photosynthetic marine bacterium Roseibaca domitiana

    Get PDF
    Shifting the bioprospecting targets toward underexplored bacterial groups combined with genome mining studies contributes to avoiding the rediscovery of known compounds by revealing novel, promising biosynthetic gene clusters (BGCs). With the aim of determining the biosynthetic potential of a novel marine bacterium, strain V10T, isolated from the Domitian littoral in Italy, a comparative phylogenomic mining study was performed across related photosynthetic bacterial groups from an evolutionary perspective. Studies on polyphasic and taxogenomics showed that this bacterium constitutes a new species, designated Roseibaca domitiana sp. nov. To date, this genus has only one other validly described species, which was isolated from a hypersaline Antarctic lake. The genomic evolutionary study linked to BGC diversity revealed that there is a close relationship between the phylogenetic distance of the members of the photosynthetic genera Roseibaca, Roseinatronobacter, and Rhodobaca and their BGC profiles, whose conservation pattern allows discriminating between these genera. On the contrary, the rest of the species related to Roseibaca domitiana exhibited an individual species pattern unrelated to genome size or source of isolation. This study showed that photosynthetic strains possess a streamlined content of BGCs, of which 94.34% of the clusters with biotechnological interest (NRPS, PKS, RRE, and RiPP) are completely new. Among these stand out T1PKS, exclusive of R. domitiana V10T, and RRE, highly conserved only in R. domitiana V10T and R. ekhonensis, both categories of BGCs involved in the synthesis of plant growth-promoting compounds and antitumoral compounds, respectively. In all cases, with very low homology with already patented molecules. Our findings reveal the high biosynthetic potential of infrequently cultured bacterial groups, suggesting the need to redirect attention to microbial minorities as a novel and vast source of bioactive compounds still to be exploited

    Unveiling the genomic potential of Pseudomonas type strains for discovering new natural products

    Get PDF
    12 páginas, 4 figurasMicrobes host a huge variety of biosynthetic gene clusters that produce an immeasurable array of secondary metabolites with many different biological activities such as antimicrobial, anticarcinogenic and antiviral. Despite the complex task of isolating and characterizing novel natural products, microbial genomic strategies can be useful for carrying out these types of studies. However, although genomic-based research on secondary metabolism is on the increase, there is still a lack of reports focusing specifically on the genus Pseudomonas. In this work, we aimed (i) to unveil the main biosynthetic systems related to secondary metabolism in Pseudomonas type strains, (ii) to study the evolutionary processes that drive the diversification of their coding regions and (iii) to select Pseudomonas strains showing promising results in the search for useful natural products. We performed a comparative genomic study on 194 Pseudomonas species, paying special attention to the evolution and distribution of different classes of biosynthetic gene clusters and the coding features of antimicrobial peptides. Using EvoMining, a bioinformatic approach for studying evolutionary processes related to secondary metabolism, we sought to decipher the protein expansion of enzymes related to the lipid metabolism, which may have evolved toward the biosynthesis of novel secondary metabolites in Pseudomonas. The types of metabolites encoded in Pseudomonas type strains were predominantly non-ribosomal peptide synthetases, bacteriocins, N-acetylglutaminylglutamine amides and ß-lactones. Also, the evolution of genes related to secondary metabolites was found to coincide with Pseudomonas species diversification. Interestingly, only a few Pseudomonas species encode polyketide synthases, which are related to the lipid metabolism broadly distributed among bacteria. Thus, our EvoMining-based search may help to discover new types of secondary metabolite gene clusters in which lipid-related enzymes are involved. This work provides information about uncharacterized metabolites produced by Pseudomonas type strains, whose gene clusters have evolved in a species-specific way. Our results provide novel insight into the secondary metabolism of Pseudomonas and will serve as a basis for the prioritization of the isolated strains. This article contains data hosted by Microreact.Z.S.S. and E.P.A. received grants from the Regional Government of Castile and Leon. Also, this work was supported by the Regional Government of Castile and Leon (Escalera de Excelencia CLU-2018-04) and co-funded by the Operational Program of the European Regional Development Fund for Castile and Leon 2014–2020.Peer reviewe

    Actinobacteria phylogenomics, selective isolation from an iron oligotrophic environment and siderophore functional characterization, unveil new desferrioxamine traits

    No full text
    Desferrioxamines are hydroxamate siderophores widely conserved in both aquatic and soil-dwelling Actinobacteria. While the genetic and enzymatic bases of siderophore biosynthesis and their transport in model families of this phylum are well understood, evolutionary studies are lacking. Here, we perform a comprehensive desferrioxamine-centric (des genes) phylogenomic analysis, which includes the genomes of six novel strains isolated from an iron and phosphorous depleted oasis in the Chihuahuan desert of Mexico. Our analyses reveal previously unnoticed desferrioxamine evolutionary patterns, involving both biosynthetic and transport genes, likely to be related to desferrioxamines chemical diversity. The identified patterns were used to postulate experimentally testable hypotheses after phenotypic characterization, including profiling of siderophores production and growth stimulation of co-cultures under iron deficiency. Based in our results, we propose a novel des gene, which we term desG, as responsible for incorporation of phenylacetyl moieties during biosynthesis of previously reported arylated desferrioxamines. Moreover, a genomic-based classification of the siderophore-binding proteins responsible for specific and generalist siderophore assimilation is postulated. This report provides a much-needed evolutionary framework, with specific insights supported by experimental data, to direct the future ecological and functional analysis of desferrioxamines in the environment

    MIBiG 2.0: a repository for biosynthetic gene clusters of known function

    No full text
    Fueled by the explosion of (meta)genomic data, genome mining of specialized metabolites has become a major technology for drug discovery and studying microbiome ecology. In these efforts, computational tools like antiSMASH have played a central role through the analysis of Biosynthetic Gene Clusters (BGCs). Thousands of candidate BGCs from microbial genomes have been identified and stored in public databases. Interpreting the function and novelty of these predicted BGCs requires comparison with a well-documented set of BGCs of known function. The MIBiG (Minimum Information about a Biosynthetic Gene Cluster) Data Standard and Repository was established in 2015 to enable curation and storage of known BGCs. Here, we present MIBiG 2.0, which encompasses major updates to the schema, the data, and the online repository itself. Over the past five years, 851 new BGCs have been added. Additionally, we performed extensive manual data curation of all entries to improve the annotation quality of our repository. We also redesigned the data schema to ensure the compliance of future annotations. Finally, we improved the user experience by adding new features such as query searches and a statistics page, and enabled direct link-outs to chemical structure databases. The repository is accessible online at https://mibig.secondarymetabolites.org/
    corecore