68 research outputs found

    The Arctic Sea ice in the CMIP3 climate model ensemble – variability and anthropogenic change

    Get PDF
    The strongest manifestation of global warming is observed in the Arctic. The warming in the Arctic during the recent decades is about twice as strong as in the global average and has been accompanied by a summer sea ice decline that is very likely unprecedented during the last millennium. Here, Arctic sea ice variability is analyzed in the ensemble of CMIP3 models. Complementary to several previous studies, we focus on regional aspects, in particular on the Barents Sea. We also investigate the changes in the seasonal cycle and interannual variability. In all regions, the models predict a reduction in sea ice area and sea ice volume during 1900–2100. Toward the end of the 21st century, the models simulate higher sea ice area variability in September than in March, whereas the variability in the preindustrial control runs is higher in March. Furthermore, the amplitude and phase of the sea ice seasonal cycle change in response to enhanced greenhouse warming. The amplitude of the sea ice area seasonal cycle increases due to the very strong sea ice area decline in September. The seasonal cycle amplitude of the sea ice volume decreases due to the stronger reduction of sea ice volume in March. Multi-model mean estimates for the late 20th century are comparable with observational data only for the entire Arctic and the Central Arctic. In the Barents Sea, differences between the multi-model mean and the observational data are more pronounced. Regional sea ice sensitivity to Northern Hemisphere average surface warming has been investigated

    Arctic sea ice area in CMIP3 and CMIP5 climate model ensembles – variability and change

    Get PDF
    The shrinking Arctic sea ice cover observed during the last decades is probably the clearest manifestation of ongoing climate change. While climate models in general reproduce the sea ice retreat in the Arctic during the 20th century and simulate further sea ice area loss during the 21st century in response to anthropogenic forcing, the models suffer from large biases and the model results exhibit considerable spread. The last generation of climate models from World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5), when compared to the previous CMIP3 model ensemble and considering the whole Arctic, were found to be more consistent with the observed changes in sea ice extent during the recent decades. Some CMIP5 models project strongly accelerated (non-linear) sea ice loss during the first half of the 21st century. Here, complementary to previous studies, we compare results from CMIP3 and CMIP5 with respect to regional Arctic sea ice change. We focus on September and March sea ice. Sea ice area (SIA) variability, sea ice concentration (SIC) variability, and characteristics of the SIA seasonal cycle and interannual variability have been analysed for the whole Arctic, termed Entire Arctic, Central Arctic and Barents Sea. Further, the sensitivity of SIA changes to changes in Northern Hemisphere (NH) averaged temperature is investigated and several important dynamical links between SIA and natural climate variability involving the Atlantic Meridional Overturning Circulation (AMOC), North Atlantic Oscillation (NAO) and sea level pressure gradient (SLPG) in the western Barents Sea opening serving as an index of oceanic inflow to the Barents Sea are studied. The CMIP3 and CMIP5 models not only simulate a coherent decline of the Arctic SIA but also depict consistent changes in the SIA seasonal cycle and in the aforementioned dynamical links. The spatial patterns of SIC variability improve in the CMIP5 ensemble, particularly in summer. Both CMIP ensembles depict a significant link between the SIA and NH temperature changes. Our analysis suggests that, on average, the sensitivity of SIA to external forcing is enhanced in the CMIP5 models. The Arctic SIA variability response to anthropogenic forcing is different in CMIP3 and CMIP5. While the CMIP3 models simulate increased variability in March and September, the CMIP5 ensemble shows the opposite tendency. A noticeable improvement in the simulation of summer SIA by the CMIP5 models is often accompanied by worse results for winter SIA characteristics. The relation between SIA and mean AMOC changes is opposite in September and March, with March SIA changes being positively correlated with AMOC slowing. Finally, both CMIP ensembles demonstrate an ability to capture, at least qualitatively, important dynamical links of SIA to decadal variability of the AMOC, NAO and SLPG. SIA in the Barents Sea is strongly overestimated by the majority of the CMIP3 and CMIP5 models, and projected SIA changes are characterized by a large spread giving rise to high uncertainty

    Arctic sea ice area changes in CMIP3 and CMIP5 climate models’ ensembles

    Get PDF
    The shrinking Arctic sea ice cover observed during the last decades is probably the clearest manifestation of ongoing climate change. While climate models in general reproduce the sea ice retreat in the Arctic during the 20th century and simulate further sea ice area loss during the 21st century in response to anthropogenic forcing, the models suffer from large biases and the results exhibit considerable spread. Here, we compare results from the two last generations of climate models, CMIP3 and CMIP5, with respect to total and regional Arctic sea ice change. Different characteristics of sea ice area (SIA) in March and September have been analysed for the Entire Arctic, Central Arctic and Barents Sea. Further, the sensitivity of SIA to changes in Northern Hemisphere (NH) temperature is investigated and dynamical links between SIA and some atmospheric variability modes are assessed. CMIP3 (SRES A1B) and CMIP5 (RCP8.5) models not only simulate a coherent decline of the Arctic SIA but also depict consistent changes in the SIA seasonal cycle. The spatial patterns of SIC variability improve in CMIP5 ensemble, most noticeably in summer when compared to HadISST1 data. A better simulation of summer SIA in the Entire Arctic by CMIP5 models is accompanied by a slightly increased bias for winter season in comparison to CMIP3 ensemble. SIA in the Barents Sea is strongly overestimated by the majority of CMIP3 and CMIP5 models, and projected SIA changes are characterized by a high uncertainty. Both CMIP ensembles depict a significant link between the SIA and NH temperature changes indicating that a part of inter-ensemble SIA spread comes from different temperature sensitivity to anthropogenic forcing. The results suggest that, in general, a sensitivity of SIA to external forcing is enhanced in CMIP5 models. Arctic SIA interannual variability in the end of the 20th century is on average well simulated by both ensembles. To the end of the 21st century, September variability is strongly reduced in CMIP5 models under RCP8.5 scenario, whereas variability changes in CMIP3 and in both ensembles in March are relatively small. The majority of models in both CMIP ensembles demonstrate an ability to capture a negative correlation of interannual SIA variations in the Barents Sea with North Atlantic Oscillation and sea level pressure gradient in the western Barents Sea opening serving as an index of oceanic inflow to the Sea

    Forecasting global ENSO-related climate anomalies

    Get PDF
    Long-range global climate forecasts have been made by use of a model for predicting a tropical Pacific sea surface temperature (SST) in tandem with an atmospheric general circulation model. The SST is predicted first at long lead times into the future. These ocean forecasts are then used to force the atmospheric model and so produce climate forecasts at lead times of the SST forecasts. Prediction of the wintertime 500 mb height, surface air temperature and precipitation for seven large climatic events of the 1970 to 1990s by this two-tiered technique agree well in general with observations over many regions of the globe. The levels of agreement are high enough in some regions to have practical utility. -Author

    Expanding Greenland Ice Sheet Enhances Sensitivity of Plio-Pleistocene Climate to Obliquity Forcing in the Kiel Climate Model

    Get PDF
    Proxy data suggest the onset of Northern Hemisphere glaciation during the Plio-Pleistocene transition from 3.2 to 2.5 Ma resulted in enhanced climate variability at the obliquity (41 kyr) frequency. Here, we investigate the influence of the expanding Greenland ice sheet (GrIS) on the mean climate and obliquity-related variability in a series of climate model simulations. These suggest that an expanding GrIS weakens the Atlantic Meridional Overturning Circulation (AMOC) by ~1 Sv, mainly due to reduced heat loss in the Greenland-Iceland-Norwegian Sea. Moreover, the growing GrIS amplifies the Hadley circulation response to obliquity forcing driving variations in freshwater export from the tropical Atlantic and in turn variations of the AMOC. The stronger AMOC response to obliquity forcing, by about a factor of two, results in a stronger global-mean near-surface temperature response. We conclude that the AMOC response to obliquity forcing is important to understand the enhanced climate variability at the obliquity frequency during the Plio-Pleistocene transition

    Climatology and variability in the ECHO coupled GCM

    Get PDF
    ECHO is a new global coupled ocean-atmosphere general circulation model (GCM), consisting of the Hamburg version of the European Centre atmospheric GCM (ECHAM) and the Hamburg Primitive Equation ocean GCM (HOPE). We performed a 20-year integration with ECHO. Climate drift is significant, but typical annual mean errors in sea surface temperature (SST) do not exceed 2° in the open oceans. Near the boundaries, however, SST errors are considerably larger. The coupled model simulates an irregular ENSO cycle in the tropical Pacific, with spatial patterns similar to those observed. The variability, however, is somewhat weaker relative to observations. ECHO also simulates significant interannual variability in mid-latitudes. Consistent with observations, variability over the North Pacific can be partly attributed to remote forcing from the tropics. In contrast, the interannual variability over the North Atlantic appears to be generated locally

    Forecasting global ENSO-related climate anomalies

    Get PDF
    Long-range global climate forecasts have been made by use of a model for predicting a tropical Pacific sea surface temperature (SST) in tandem with an atmospheric general circulation model. The SST is predicted first at long lead times into the future. These ocean forecasts are then used to force the atmospheric model and so produce climate forecasts at lead times of the SST forecasts. Prediction of the wintertime 500mb height, surface air temperature and precipitation for seven large climatic events of the 1970 1990s by this two-tiered technique agree well in general with observations over many regions of the globe. The levels of agreement are high enough in some regions to have practical utility

    Antibacterial Oligomeric Polyphenols from the Green Alga Cladophora socialis

    Get PDF
    A series of oligomeric phenols including the known natural product 3,4,3â€Č,4â€Č-tetrahydroxy-1,1â€Č-biphenyl (3), the previously synthesized 2,3,8,9-tetrahydroxybenzo[c]-chromen-6-one (4), and eight new related natural products, cladophorols B−I (5−12), were isolated from the Fijian green alga Cladophora socialis and identified by a combination of NMR spectroscopy, mass spectrometric analysis, and computational modeling using DFT calculations. J-resolved spectroscopy and line width reduction by picric acid addition aided in resolving the heavily overlapped aromatic signals. A panel of Gram-positive and Gram-negative pathogens used to evaluate pharmacological potential led to the determination that cladophorol C (6) exhibits potent antibiotic activity selective toward methicillin-resistant Staphylococcus aureus (MRSA) with an MIC of 1.4 ÎŒg/mL. Cladophorols B (5) and D−H (7−11) had more modest but also selective antibiotic potency. Activities of cladophorols A−I (4−12) were also assessed against the asexual blood stages of Plasmodium falciparum and revealed cladophorols A (4) and B (5) to have modest activity with EC50 values of 0.7 and 1.9 ÎŒg/mL, respectively

    Tropical air-sea interaction in general circulation models

    Get PDF
    An intercomparison is undertaken of the tropical behavior of 17 coupled ocean-atmosphere models in which at least one component may be termed a general circulation model (GCM). The aim is to provide a taxonomy—a description and rough classification—of behavior across the ensemble of models, focusing on interannual variability. The temporal behavior of the sea surface temperature (SST) field along the equator is presented for each model, SST being chosen as the primary variable for intercomparison due to its crucial role in mediating the coupling and because it is a sensitive indicator of climate drift. A wide variety of possible types of behavior are noted among the models. Models with substantial interannual tropical variability may be roughly classified into cases with propagating SST anomalies and cases in which the SST anomalies develop in place. A number of the models also exhibit significant drift with respect to SST climatology. However, there is not a clear relationship between climate drift and the presence or absence of interannual oscillations. In several cases, the mode of climate drift within the tropical Pacific appears to involve coupled feedback mechanisms similar to those responsible for El Niño variability. Implications for coupled-model development and for climate prediction on seasonal to interannual time scales are discussed. Overall, the results indicate considerable sensitivity of the tropical coupled ocean-atmosphere system and suggest that the simulation of the warm-pool/cold-tongue configuration in the equatorial Pacific represents a challenging test for climate model parameterizations

    Common Data Elements to Facilitate Sharing and Re-use of Participant-Level Data: Assessment of Psychiatric Comorbidity Across Brain Disorders

    Get PDF
    The Ontario Brain Institute\u27s “Brain-CODE” is a large-scale informatics platform designed to support the collection, storage and integration of diverse types of data across several brain disorders as a means to understand underlying causes of brain dysfunction and developing novel approaches to treatment. By providing access to aggregated datasets on participants with and without different brain disorders, Brain-CODE will facilitate analyses both within and across diseases and cover multiple brain disorders and a wide array of data, including clinical, neuroimaging, and molecular. To help achieve these goals, consensus methodology was used to identify a set of core demographic and clinical variables that should be routinely collected across all participating programs. Establishment of Common Data Elements within Brain-CODE is critical to enable a high degree of consistency in data collection across studies and thus optimize the ability of investigators to analyze pooled participant-level data within and across brain disorders. Results are also presented using selected common data elements pooled across three studies to better understand psychiatric comorbidity in neurological disease (Alzheimer\u27s disease/amnesic mild cognitive impairment, amyotrophic lateral sclerosis, cerebrovascular disease, frontotemporal dementia, and Parkinson\u27s disease)
    • 

    corecore