6 research outputs found

    Local light-activation of the Src oncoprotein in an epithelial monolayer promotes collective extrusion

    Get PDF
    International audienceTransformed isolated cells are usually extruded from normal epithelia and subsequently eliminated. However, multicellular tumors outcompete healthy cells, highlighting the importance of collective effects. Here, we investigate this situation in vitro by controlling in space and time the activity of the Src oncoprotein within a normal Madin-Darby Canine Kidney (MDCK) epithelial cell monolayer. Using an optogenetics approach with cells expressing a synthetic light-sensitive version of Src (optoSrc), we reversibly trigger the oncogenic activity by exposing monolayers to well-defined light patterns. We show that small populations of activated optoSrc cells embedded in the non-transformed monolayer collectively extrude as a tridimensional aggregate and remain alive, while the surrounding normal cells migrate towards the exposed area. This phenomenon requires an interface between normal and transformed cells and is partially reversible. Traction forces show that Src-activated cells either actively extrude or are pushed out by the surrounding cells in a non-autonomous way

    Compétition entre populations de cellules normales et transformées

    No full text
    During the development of a tumour in a tissue, the cancer cells are surrounded by healthy cells. The interactions between these two cell types, transformed and normal, play an important role in the tumour stability, but remain to this day poorly understood. The aim of this thesis was to establish in vitro assays to study the interactionsbetween populations of normal and transformed cells. We benefited from a light-sensitive cell line, constructed by Olivier Destaing (IAB, Grenoble). When they areexposed to blue light, these cells overactivate the protein Src, which is known to be overexpressed in many cancers. Otherwise, they keep a normal phenotype. Using these cells, called “OptoSrc”, in combination with an optical setup, we are able to create mosaic tissues in which the pattern of mutated cells is determined by the blue illumination pattern. Our system has several advantages: a selective control in time and space of the group of transformed cells, and a gradual and reversible activation of the oncoprotein. We have shown that when we illuminate a circular islet of cells from a monolayer of OptoSrc cells, the activated cells were collectively extruded, resulting in a cohesive three-dimensional aggregate on top of the monolayer. We can control the size and appearance time of this spheroid by tuning, respectively, the area and frequency ofillumination. Besides, this collective extrusion is reversible when the blue light stimulation is stopped. Finally, we have shown that the formation of this three- dimensional aggregate coincides with the loss of E-cadherin at the membrane, as well as the apparition of vimentin, for the illuminated OptoSrc cells. Our results suggest thata group of cells overexpressing the protein Src, in a monolayer of normal cells, undergoes a partial epithelial-tomesenchymal transition.Lors du dĂ©veloppement d’une tumeur au sein d’un tissu, les cellules cancĂ©reuses se retrouvent entourĂ©es par les cellules saines. Les interactions entre ces deux types cellulaires, transformĂ© et normal, jouent un rĂŽle important dans le devenir de la tumeur, mais restent `a ce jour mal comprises. L’objectif de cette thĂšse a Ă©tĂ© de mettre en place des systĂšmes in vitro qui permettent d’étudier les interactions entre une population de cellules normales et une population de cellules transformĂ©es. Nous avons tirĂ© profit d’une lignĂ©e de cellules Ă©pithĂ©liales sensibles Ă  la lumiĂšre, Ă©laborĂ©e par Olivier Destaing(IAB, Grenoble). Lorsqu’elles sont exposĂ©es Ă  la lumiĂšre bleue, ces cellules suractivent la protĂ©ine Src, connue pour ĂȘtre surexprimĂ© dans de nombreux cancers. Sinon, elles gardent un phĂ©notype normal. L’utilisation de ces cellules, appelĂ©es “OptoSrc”, combinĂ©e `a un dispositif optique, permet de crĂ©er des tissus mosaĂŻques dans lesquels le motif des cellules mutĂ©es est dĂ©terminĂ© par le motif d’illumination bleue. Notre systĂšme prĂ©sente plusieurs avantages : le contrĂŽle dans le temps et dans l’espace du motif de cellules transformĂ©es, mais aussi l’activation graduelle et rĂ©versible de l’oncoprotĂ©ine. Nous avons montrĂ© qu’en illuminant dans le bleu un Ăźlot circulaire de cellules au sein d’une monocouche OptoSrc, les cellules activĂ©es s’extrudent collectivement, donnant naissance `a un agrĂ©gat tri-dimensionnel cohĂ©sif surplombant la monocouche. Nous pouvons contrĂŽler la taille et le temps d’apparition de ce sphĂ©roĂŻde en ajustant respectivement l’aire Ă©clairĂ©e et la frĂ©quence d’illumination. De plus, ce phĂ©nomĂšne d’extrusion collective est rĂ©versible lorsque le stimulus de lumiĂšre bleue s’arrĂȘte. Finalement, nous avons montrĂ© que la formation de cet agrĂ©gats s’accompagne d’une diminution des E-cadhĂ©rines Ă  la membrane, et de l’apparition de la vimentine, pour les cellules Ă©clairĂ©es. Nos rĂ©sultats suggĂšrent qu’un groupe de cellules surexprimant la protĂ©ine Src, au sein d’une monocouche de cellules normales, subit une transition epithĂ©liale-mesenchymateuse partielle

    Competition between normal and transformed cell populations.

    No full text
    Lors du dĂ©veloppement d’une tumeur au sein d’un tissu, les cellules cancĂ©reuses se retrouvent entourĂ©es par les cellules saines. Les interactions entre ces deux types cellulaires, transformĂ© et normal, jouent un rĂŽle important dans le devenir de la tumeur, mais restent Ă  ce jour mal comprises. L’objectif de cette thĂšse a Ă©tĂ© de mettre en place des systĂšmes in vitro qui permettent d’étudier les interactions entre une population de cellules normales et une population de cellules transformĂ©es.Nous avons tirĂ© profit d’une lignĂ©e de cellules Ă©pithĂ©liales sensibles Ă  la lumiĂšre, Ă©laborĂ©e par Olivier Destaing (IAB, Grenoble). Lorsqu’elles sont exposĂ©es Ă  la lumiĂšre bleue, ces cellules suractivent la protĂ©ine Src, connue pour ĂȘtre surexprimĂ©e dans de nombreux cancers. Sinon, elles gardent un phĂ©notype normal. L’utilisation de ces cellules, appelĂ©es « OptoSrc », combinĂ©e Ă  un dispositif optique, permet de crĂ©er des tissus mosaĂŻques dans lesquels le motif des cellules mutĂ©es est dĂ©terminĂ© par le motif d’illumination bleue. Notre systĂšme prĂ©sente plusieurs avantages : le contrĂŽle dans le temps et dans l’espace du motif de cellules transformĂ©es, mais aussi l’activation graduelle et rĂ©versible de l’oncoprotĂ©ine.Nous avons montrĂ© qu’en illuminant dans le bleu un Ăźlot circulaire de cellules au sein d’une monocouche OptoSrc, les cellules activĂ©es s’extrudent collectivement, donnant naissance Ă  un agrĂ©gat tri-dimensionnel cohĂ©sif surplombant la monocouche. Nous pouvons contrĂŽler la taille et le temps d’apparition de ce sphĂ©roĂŻde en ajustant respectivement l’aire Ă©clairĂ©e et la frĂ©quence d’illumination. De plus, ce phĂ©nomĂšne d’extrusion collective est rĂ©versible lorsque le stimulus de lumiĂšre bleue s’arrĂȘte. Finalement, nous avons montrĂ© que la formation de cet agrĂ©gat s’accompagne d’une diminution des E-cadhĂ©rines Ă  la membrane, et de l’apparition de la vimentine, pour les cellules Ă©clairĂ©es. Nos rĂ©sultats suggĂšrent qu'un groupe de cellules surexprimant la protĂ©ine Src, au sein d’une monocouche de cellules normales, subit une transition epithĂ©liale- mesenchymateuse partielle.During the development of a tumour in a tissue, the cancer cells are surrounded by healthy cells. The interactions between these two cell types, transformed and normal, play an important role in the tumour stability, but remain to this day poorly understood. The aim of this thesis was to establish in vitro assays to study the interactions between populations of normal and transformed cells.We benefited from a light-sensitive cell line, constructed by Olivier Destaing (IAB, Grenoble). When they are exposed to blue light, these cells overactivate the protein Src, which is known to be overexpressed in many cancers. Otherwise, they keep a normal phenotype. Using these cells, called “OptoSrc”, in combination with an optical setup, we are able to create mosaic tissues in which the pattern of mutated cells is determined by the blue illumination pattern. Our system has several advantages: a selective control in time and space of the group of transformed cells, and a gradual and reversible activation of the oncoprotein.We have shown that when we illuminate a circular islet of cells from a monolayer of OptoSrc cells, the activated cells were collectively extruded, resulting in a cohesive three-dimensional aggregate on top of the monolayer. We can control the size and appearance time of this spheroid by tuning, respectively, the area and frequency of illumination. Besides, this collective extrusion is reversible when the blue light stimulation is stopped. Finally, we have shown that the formation of this three-dimensional aggregate coincides with the loss of E-cadherin at the membrane, as well as the apparition of vimentin, for the illuminated OptoSrc cells. Our results suggest that a group of cells overexpressing the protein Src, in a monolayer of normal cells, undergoes a partial epithelial-to-mesenchymal transition

    Collective stresses drive competition between monolayers of normal and Ras-transformed cells

    No full text
    23 pages, 12 figuresInternational audienceWe study the competition for space between two cell lines that differ only in the expression of the Ras oncogene. The two cell populations are initially separated and set to migrate antagonistically towards an in-between stripe of free substrate. After contact, their interface moves towards the population of normal cells. We interpret the velocity and traction force data taken before and after contact thanks to a hydrodynamic description of collectively migrating cohesive cell sheets. The kinematics of cells, before and after contact, allows us to estimate the relative material parameters for both cell lines. As predicted by the model, the transformed cell population with larger collective stresses pushes the wild type cell population

    Collective stresses drive competition between monolayers of normal and Ras-transformed cells

    No full text
    23 pages, 12 figuresInternational audienceWe study the competition for space between two cell lines that differ only in the expression of the Ras oncogene. The two cell populations are initially separated and set to migrate antagonistically towards an in-between stripe of free substrate. After contact, their interface moves towards the population of normal cells. We interpret the velocity and traction force data taken before and after contact thanks to a hydrodynamic description of collectively migrating cohesive cell sheets. The kinematics of cells, before and after contact, allows us to estimate the relative material parameters for both cell lines. As predicted by the model, the transformed cell population with larger collective stresses pushes the wild type cell population
    corecore