6,091 research outputs found

    On the Origin of the Wide HI Absorption Line Toward Sgr A*

    Full text link
    We have imaged a region of about 5' extent surrounding Sgr A* in the HI 21 cm-line absorption using the Very Large Array. A Gaussian decomposition of the optical depth spectra at positions within about 2' (approx. 5 pc at 8.5 kpc) of Sgr A* detects a wide line underlying the many narrow absorption lines. The wide line has a mean peak optical depth of 0.32 +/- 0.12 centered at a mean velocity of V(lsr) = -4 +/- 15 km/s. The mean full width at half maximum is 119 +/- 42 km/s. Such a wide line is absent in the spectra at positions beyond about 2' from Sgr A*. The position-velocity diagrams in optical depth reveal that the wide line originates in various components of the circumnuclear disk (radius approx. 1.3') surrounding Sgr A*. These components contribute to the optical depth of the wide line in different velocity ranges. The position-velocity diagrams do not reveal any diffuse feature which could be attributed to a large number of HI clouds along the line of sight to Sgr A*. Consequently, the wide line has no implications either to a global population of shocked HI clouds in the Galaxy or to the energetics of the interstellar medium as was earlier thought.Comment: LaTeX, 12 pages and 9 figures, accepted for publication in J. Astrophys. Ast

    Pion propagation in the linear sigma model at finite temperature

    Get PDF
    We construct effective one-loop vertices and propagators in the linear sigma model at finite temperature, satisfying the chiral Ward identities and thus respecting chiral symmetry, treating the pion momentum, pion mass and temperature as small compared to the sigma mass. We use these objects to compute the two-loop pion self-energy. We find that the perturbative behavior of physical quantities, such as the temperature dependence of the pion mass, is well defined in this kinematical regime in terms of the parameter m_pi^2/4pi^2f_pi^2 and show that an expansion in terms of this reproduces the dispersion curve obtained by means of chiral perturbation theory at leading order. The temperature dependence of the pion mass is such that the first and second order corrections in the above parameter have the same sign. We also study pion damping both in the elastic and inelastic channels to this order and compute the mean free path and mean collision time for a pion traveling in the medium before forming a sigma resonance and find a very good agreement with the result from chiral perturbation theory when using a value for the sigma mass of 600 MeV.Comment: 18 pages, 11 figures, uses RevTeX and epsfig. Expanded conclusions, added references. To appear in Phys. Rev.

    Arithmetically Cohen-Macaulay Bundles on complete intersection varieties of sufficiently high multidegree

    Full text link
    Recently it has been proved that any arithmetically Cohen-Macaulay (ACM) bundle of rank two on a general, smooth hypersurface of degree at least three and dimension at least four is a sum of line bundles. When the dimension of the hypersurface is three, a similar result is true provided the degree of the hypersurface is at least six. We extend these results to complete intersection subvarieties by proving that any ACM bundle of rank two on a general, smooth complete intersection subvariety of sufficiently high multi-degree and dimension at least four splits. We also obtain partial results in the case of threefolds.Comment: 15 page

    Quantum entanglement in photosynthetic light harvesting complexes

    Full text link
    Light harvesting components of photosynthetic organisms are complex, coupled, many-body quantum systems, in which electronic coherence has recently been shown to survive for relatively long time scales despite the decohering effects of their environments. Within this context, we analyze entanglement in multi-chromophoric light harvesting complexes, and establish methods for quantification of entanglement by presenting necessary and sufficient conditions for entanglement and by deriving a measure of global entanglement. These methods are then applied to the Fenna-Matthews-Olson (FMO) protein to extract the initial state and temperature dependencies of entanglement. We show that while FMO in natural conditions largely contains bipartite entanglement between dimerized chromophores, a small amount of long-range and multipartite entanglement exists even at physiological temperatures. This constitutes the first rigorous quantification of entanglement in a biological system. Finally, we discuss the practical utilization of entanglement in densely packed molecular aggregates such as light harvesting complexes.Comment: 14 pages, 7 figures. Improved presentation, published versio

    Deep VLA Observations of the Cluster 1RXS J0603.3+4214 in the Frequency Range of 1–2 GHz

    Get PDF
    We report L-band VLA observations of 1RXS J0603.3+4214, a cluster that hosts a bright radio relic, known as the Toothbrush, and an elongated giant radio halo. These new observations allow us to study the surface brightness distribution down to one arcsec resolution with very high sensitivity. Our images provide an unprecedented detailed view of the Toothbrush, revealing enigmatic filamentary structures. To study the spectral index distribution, we complement our analysis with published LOFAR and GMRT observations. The bright `brush' of the Toothbrush shows a prominent narrow ridge to its north with a sharp outer edge. The spectral index at the ridge is in the range 0.70α0.80-0.70\leq\alpha\leq-0.80. We suggest that the ridge is caused by projection along the line of sight. With a simple toy model for the smallest region of the ridge, we conclude that the magnetic field is below 5μG5\,\rm\mu G and varies significantly across the shock front. Our model indicates that the actual Mach number is higher than that obtained from the injection index and agrees well with the one derived from the overall spectrum, namely M=3.780.2+0.3{\cal M}=3.78^{+0.3}_{-0.2}. The radio halo shows an average spectral index of α=1.16±0.05\alpha=-1.16\pm0.05 and a slight gradient from north to south. The southernmost part of the halo is steeper and possibly related to a shock front. Excluding the southernmost part, the halo morphology agrees very well with the X-ray morphology. A power-law correlation is found between the radio and X-ray surface brightnessComment: 23 pages, 21 figures, accepted for publication in Ap

    Analysis of Elliptically Polarized Maximally Entangled States for Bell Inequality Tests

    Get PDF
    When elliptically polarized maximally entangled states are considered, i.e., states having a non random phase factor between the two bipartite polarization components, the standard settings used for optimal violation of Bell inequalities are no longer adapted. One way to retrieve the maximal amount of violation is to compensate for this phase while keeping the standard Bell inequality analysis settings. We propose in this paper a general theoretical approach that allows determining and adjusting the phase of elliptically polarized maximally entangled states in order to optimize the violation of Bell inequalities. The formalism is also applied to several suggested experimental phase compensation schemes. In order to emphasize the simplicity and relevance of our approach, we also describe an experimental implementation using a standard Soleil-Babinet phase compensator. This device is employed to correct the phase that appears in the maximally entangled state generated from a type-II nonlinear photon-pair source after the photons are created and distributed over fiber channels.Comment: 8 page

    Variation at the NFATC2 Locus Increases the Risk of Thiazolidinedione-Induced Edema in the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) Study

    Get PDF
    Objective: Thiazolidinediones are used to treat type 2 diabetes. Their use has been associated with peripheral edema and congestive heart failure - outcomes that may have a genetic etiology. Research Design and Methods: We genotyped 4,197 participants of the multiethnic DREAM (Diabetes Reduction Assessment with ramipril and rosiglitazone Medication) trial with a 50k single nucleotide polymorphisms (SNP) array, which captures ∼2000 cardiovascular, inflammatory, and metabolic genes. We tested 32,088 SNPs for an association with edema among Europeans who received rosiglitazone (n = 965). Results: One SNP, rs6123045, in NFATC2 was significantly associated with edema (odds ratio 1.89 [95% CI 1.47-2.42]; P = 5.32 × 10-7, corrected P = 0.017). Homozygous individuals had the highest edema rate (hazard ratio 2.89, P = 4.22 × 10-4) when compared with individuals homozygous for the protective allele, with heterozygous individuals having an intermediate risk. The interaction between the SNP and rosiglitazone for edema was significant (P = 7.68 × 10-3). Six SNPs in NFATC2 were significant in both Europeans and Latin Americans (P < 0.05). Conclusions: Genetic variation at the NFATC2 locus contributes to edema among individuals who receive rosiglitazone

    Multi-Particle Collision Dynamics -- a Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids

    Full text link
    In this review, we describe and analyze a mesoscale simulation method for fluid flow, which was introduced by Malevanets and Kapral in 1999, and is now called multi-particle collision dynamics (MPC) or stochastic rotation dynamics (SRD). The method consists of alternating streaming and collision steps in an ensemble of point particles. The multi-particle collisions are performed by grouping particles in collision cells, and mass, momentum, and energy are locally conserved. This simulation technique captures both full hydrodynamic interactions and thermal fluctuations. The first part of the review begins with a description of several widely used MPC algorithms and then discusses important features of the original SRD algorithm and frequently used variations. Two complementary approaches for deriving the hydrodynamic equations and evaluating the transport coefficients are reviewed. It is then shown how MPC algorithms can be generalized to model non-ideal fluids, and binary mixtures with a consolute point. The importance of angular-momentum conservation for systems like phase-separated liquids with different viscosities is discussed. The second part of the review describes a number of recent applications of MPC algorithms to study colloid and polymer dynamics, the behavior of vesicles and cells in hydrodynamic flows, and the dynamics of viscoelastic fluids
    corecore