96 research outputs found
Enhancing the Fake News Classification Model Using Find-Tuning Approach
Over the last few years, the rise of fake news on social media has emerged as a significant issue, posing a potential threat to individuals, organizations, and society as a whole. As a solution to this issue, researchers have been using various natural language processing (NLP) techniques to detect fake news. In this study, we introduce a new strategy for fake news detection and classification. Our approach involves enhancing the performance of accuracy through fine-tuning, by merging BEART model with the proposed model DCNN. We have collected the data from secondary sources and combined it into a unified dataset. To improve its quality, we performed various processes such as data cleaning, transformation, integration, and reduction, which involved techniques like stop word removal, tokenization, and stemming, resulting in binary classification. Therefore, DCNN" was trained to classify news articles as real or fake, and the experiments on the dataset show that this approach performs better than several recent studies for detecting fake news, achieving high accurac
Deletion and Functional Analysis of Hepatitis B Virus X Protein: Evidence for an Effect on Cell Cycle Regulators
Background/Aims: The hepatitis B virus X protein (HBx) is a viral trans-activator that plays a crucial role in pathogenesis of hepatocellular carcinoma (HCC) via an unknown mechanism. The role of HBx in modulating cell proliferation and programmed cell death is replete with controversies. Thus, the goal of this study was to elucidate the effect of HBx and its deletion mutants on cell cycle progression in human hepatoma cells. Methods: Huh7 cells transfected with either full-length or truncated HBx were tested for their mitogenic potential based on their effect on the expression of key cell cycle-related proteins (p27, cyclin D1, p21, and p53) and pro-apoptotic proteins such as cleaved poly (ADP-ribose) polymerase (PARP) and Bax. Western blotting and immunofluorescence techniques were applied to detect changes in the expression levels and intracellular localization, respectively, of the investigated proteins. Also, Quantitative real-time PCR (qRT-PCR) was used to detect changes in RNA levels. Results: An increased anchorage-independent growth of cells transfected with HBx-WT and its deletion mutants was observed. The cell cycle regulatory molecules were differentially modulated by full-length HBx (1-154) and its different N- and C-terminal truncated forms (HBx (31-154), HBx (61-154), HBx (1-94), and HBx (61-124)). An enhanced modulation of p27, p21, and cyclin D1 was associated with HBx (1-154), whereas p53 expression was significantly inhibited by HBx (61-124). Similarly, the expression of cleaved PARP and Bax was efficiently suppressed by HBx (1-94) and HBx (61-154). Conclusion: The HBx-WT and its mutants play a critical role in the pathogenesis and progression of HCC by modulating cell cycle regulatory proteins
Inhibition of growth of Leishmania donovani promastigotes by newly synthesized 1,3,4-thiadiazole analogs
AbstractLeishmania donovani, the causative agent of visceral leishmaniasis, is transmitted by sand flies and replicates intracellularly in their mammalian host cells. The emergence of drug-resistant strains has hampered efforts to control the spread of the disease worldwide. Forty-four 1,3,4-thiadiazole derivatives and related compounds were tested in vitro for possible anti-leishmanial activity against the promastigotes of L. donovani. Micromolar concentrations of these agents were used to study the inhibition of multiplication of L. donovani promastigotes. Seven compounds were identified with potential antigrowth agents of the parasite. Compound 4a was the most active at 50ÎĽM followed by compound 3a. These compounds could prove useful as a future alternative for the control of visceral leishmaniasis
Correlation between Genetic Variations and Serum Level of Interleukin 28B with Virus Genotypes and Disease Progression in Chronic Hepatitis C Virus Infection
Recent studies have demonstrated that polymorphisms near the interleukin-28B (IL-28B) gene could predict the response to Peg-IFN-a/RBV combination therapy in HCV-infected patients. The aim of the study was to correlate the serum level of IL28B in HCV-infected patients with virus genotype/subgenotype and disease progression. IL28B serum level was detected and variations at five single nucleotide polymorphisms (SNPs) in IL28B gene region were genotyped and analyzed. The variation of IL28B genetic polymorphisms was found to be strongly associated with HCV infection when healthy control group was compared to HCV-infected patients with all P values <0.0001. Functional analysis revealed that subjects carrying rs8099917-GG genotype had higher serum level of IL28B than those with GT or TT genotypes (P=0.04). Also, patients who were presented with cirrhosis (Cirr) only or with cirrhosis plus hepatocellular carcinoma (Cirr+HCC) had higher levels of serum IL28B when compared to chronic HCV-infected patients (P=0.005 and 0.003, resp.). No significant association was found when serum levels of IL28B were compared to virus genotypes/subgenotypes. This study indicates that variation at SNP rs8099917 could predict the serum levels of IL28B in HCV-infected patients. Furthermore, IL28B serum level may serve as a useful marker for the development of HCV-associated sequelae
RNase L Mediates Transient Control of The Interferon Response Through Modulation of The Double-stranded RNA-Dependent Protein Kinase PKR
The transient control of diverse biological responses that occurs in response to varied forms of stress is often a highly regulated process. During the interferon (IFN) response, translational repression due to phosphorylation of eukaryotic initiation factor 2α, eIF2α, by the double-stranded RNA-dependent protein kinase, PKR, constitutes a means of inhibiting viral replication. Here we show that the transient nature of the IFN response against acute viral infections is regulated, at least in part, by RNase L. During the IFN antiviral response in RNase L-null cells, PKR mRNA stability was enhanced, PKR induction was increased, and the phosphorylated form of eIF2α appeared with extended kinetics compared with similarly treated wild type cells. An enhanced IFN response in RNase L-null cells was also demonstrated by monitoring inhibition of viral protein synthesis. Furthermore, ectopic expression of RNase L from a plasmid vector prevented the IFN induction of PKR. These results suggest a role for RNase L in the transient control of the IFN response and possibly of other cytokine and stress responses
RNase L Mediates Transient Control of The Interferon Response Through Modulation of The Double-stranded RNA-Dependent Protein Kinase PKR
The transient control of diverse biological responses that occurs in response to varied forms of stress is often a highly regulated process. During the interferon (IFN) response, translational repression due to phosphorylation of eukaryotic initiation factor 2α, eIF2α, by the double-stranded RNA-dependent protein kinase, PKR, constitutes a means of inhibiting viral replication. Here we show that the transient nature of the IFN response against acute viral infections is regulated, at least in part, by RNase L. During the IFN antiviral response in RNase L-null cells, PKR mRNA stability was enhanced, PKR induction was increased, and the phosphorylated form of eIF2α appeared with extended kinetics compared with similarly treated wild type cells. An enhanced IFN response in RNase L-null cells was also demonstrated by monitoring inhibition of viral protein synthesis. Furthermore, ectopic expression of RNase L from a plasmid vector prevented the IFN induction of PKR. These results suggest a role for RNase L in the transient control of the IFN response and possibly of other cytokine and stress responses
vancomycin resistant enterococcus faecium high resolution typing by core genome multilocus sequence typing
This item has no abstract. Follow the links below to access the full text
Dissemination of multiple carbapenem-resistant clones of Acinetobacter baumannii in the Eastern District of Saudi Arabia
It has previously been shown that carbapenem-resistant Acinetobacter baumannii are frequently detected in Saudi Arabia. The present study aimed to identify the epidemiology and distribution of antibiotic resistance determinants in these bacteria. A total of 83 A. baumannii isolates were typed by pulsed-field gel electrophoresis (PFGE), and screened by PCR for carbapenemase genes and insertion sequences. Antibiotic sensitivity to imipenem, meropenem, tigecycline, and colistin were determined. Eight different PFGE groups were identified, and were spread across multiple hospitals. Many of the PFGE groups contained isolates belonging to World-wide clone 2. Carbapenem resistance or intermediate resistance was detected in 69% of isolates. The blaVIM gene was detected in 94% of isolates, while blaOXA–23–like genes were detected in 58%. The data demonstrate the co-existence and wide distribution of a number of clones of carbapenem-resistant A. baumannii carrying multiple carbapenem-resistance determinants within hospitals in the Eastern Region of Saudi Arabia
The Association of Toll-Like Receptor 4 Polymorphism with Hepatitis C Virus Infection in Saudi Arabian Patients
Hepatitis C virus (HCV) is a single stranded RNA virus. It affects millions of people worldwide and is considered as a leading cause of liver diseases including cirrhosis and hepatocellular carcinoma. A recent study reported that TLR4 gene polymorphisms are good prognostic predictors and are associated with protection from liver fibrosis among Caucasians. This study aims to investigate the implication of genetic polymorphisms of TLR4 gene on the HCV infection in Saudi Arabian patients. Two SNPs in the TLR4 gene, rs4986790 (A/G) and rs4986791 (C/T), were genotyped in 450 HCV patients and 600 uninfected controls. The association analysis confirmed that both SNPs showed a significant difference in their distribution between HCV-infected patients and uninfected control subjects ( < 0.0001; OR = 0.404, 95% CI = 0.281-0.581) and ( < 0.0001; OR = 0.298, 95% CI = 0.201-0.443), respectively. More importantly, haplotype analysis revealed that four haplotypes, AC, GT, GC, and AT (rs4986790, rs4986791), were significantly associated with HCV infection when compared with control subjects. One haplotype AC was more prominently found when chronic HCV-infected patients were compared with cirrhosis/HCC patients (frequency = 94.7% and = 0.04). Both TLR4 SNPs under investigation were found to be significantly implicated with HCV-infection among Saudi Arabian population
- …