15 research outputs found

    Assessing the predictive value of neutrophil percentage to albumin ratio for ICU admission in ischemic stroke patients

    Get PDF
    BackgroundAcute ischemic stroke (AIS) remains a substantial global health challenge, contributing to increased morbidity, disability, and mortality. This study aimed at investigating the predictive value of the neutrophil percentage to albumin ratio (NPAR) in determining intensive care unit (ICU) admission among AIS patients.MethodsA retrospective observational study was conducted, involving AIS cases admitted to a tertiary hospital in Jordan between 2015 and 2020. Lab data were collected upon admission, and the primary outcome was ICU admission during hospitalization. Descriptive and inferential analyses were performed using SPSS version 29.ResultsIn this study involving 364 AIS patients, a subset of 77 (21.2%) required admission to the ICU during their hospital stay, most frequently within the first week of admission. Univariable analysis revealed significantly higher NPAR levels in ICU-admitted ischemic stroke patients compared to those who were not admitted (23.3 vs. 15.7, p < 0.001), and multivariable regression models confirmed that higher NPAR (≥19.107) independently predicted ICU admission in ischemic stroke patients (adjusted odds ratio [aOR] = 4.85, 95% CI: 1.83–12.83). Additionally, lower GCS scores and higher neutrophil-to-lymphocyte ratio (NLR) were also associated with increased likelihood of ICU admission. In terms of predictive performance, NPAR showed the highest accuracy with an AUC of 0.885, sensitivity of 0.805, and specificity of 0.854, using a cutoff value of 19.107. NPAR exhibits an AUC of 0.058, significantly outperforming NLR (Z = 2.782, p = 0.005).ConclusionNPAR emerged as a robust independent predictor of ICU admission in ischemic stroke patients, surpassing the predictive performance of the NLR

    The role of genetic polymorphism and other factors on clopidogrel resistance (CR) in an Asian population with coronary heart disease (CHD)

    Get PDF
    Clopidogrel is a widely-used antiplatelet drug. It is important for the treatment and prevention of coronary heart disease. Clopidogrel can effectively reduce platelet activity and therefore reduce stent thrombosis. However, some patients still have ischemic events despite taking the clopidogrel due to the alteration in clopidogrel metabolism attributable to various genetic and non-genetic factors. This review aims to summarise the mechanisms and causes of clopidogrel resistance (CR) and potential strategies to overcome it. This review summarised the possible effects of genetic polymorphism on CR among the Asian population, especially CYP2C19 *2 / *3 / *17, where the prevalence rate among Asians was 23.00%, 4.61%, 15.18%, respectively. The review also studied the effects of other factors and appropriate strategies used to overcome CR. Generally, CR among the Asian population was estimated at 17.2–81.6%. Therefore, our overview provides valuable insight into the causes of RC. In conclusion, understanding the prevalence of drug metabolism-related genetic polymorphism, especially CYP2C19 alleles, will enhance clinical understanding of racial differences in drug reactions, contributing to the development of personalised medicine in Asia

    The management of myocardial injury related to SARS-CoV-2 pneumonia

    Get PDF
    The global evolution of the SARS-CoV-2 virus is known to all. The diagnosis of SARS-CoV-2 pneumonia is expected to worsen, and mortality will be higher when combined with myocardial injury (MI). The combination of novel coronavirus infections in patients with MI can cause confusion in diagnosis and assessment, with each condition exacerbating the other, and increasing the complexity and difficulty of treatment. It would be a formidable challenge for clinical practice to deal with this situation. Therefore, this review aims to gather literature on the progress in managing MI related to SARS-CoV-2 pneumonia. This article reviews the definition, pathogenesis, clinical evaluation, management, and treatment plan for MI related to SARS-CoV-2 pneumonia based on the most recent literature, diagnosis, and treatment trial reports. Many studies have shown that early diagnosis and implementation of targeted treatment measures according to the different stages of disease can reduce the mortality rate among patients with MI related to SARS-CoV-2 pneumonia. The reviewed studies show that multiple strategies have been adopted for the management of MI related to COVID-19. Clinicians should closely monitor SARS-CoV-2 pneumonia patients with MI, as their condition can rapidly deteriorate and progress to heart failure, acute myocardial infarction, and/or cardiogenic shock. In addition, appropriate measures need to be implemented in the diagnosis and treatment to provide reasonable care to the patient

    The impact of SARS-CoV-2 treatment on the cardiovascular system: an updated review

    No full text
    The coronavirus disease-2019 (COVID-19) pandemic has become a major global health problem. COVID-19 is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and exhibits pulmonary and extrapulmonary effects, including cardiovascular involvement. There are several attempts to identify drugs that could treat COVID-19. Moreover, many patients infected with COVID-19 have underlying diseases, particularly cardiovascular diseases. These patients are more likely to develop severe illnesses and would require optimized treatment strategies. The current study gathered information from various databases, including relevant studies, reviews, trials, or meta-analyses until April 2022 to identify the impact of SARS-CoV-2 treatment on the cardiovascular system. Studies have shown that the prognosis of patients with underlying cardiovascular disease is worsened by COVID-19, with some COVID-19 medications interfering with the cardiovascular system. The COVID-19 treatment strategy should consider many factors and parameters to avoid medication-induced cardiac injury, mainly in elderly patients. Therefore, this article provides a synthesis of evidence on the impact of different COVID-19 medications on the cardiovascular system and related disease condition

    Coronary Heart Disease (CHD) in Elderly Patients: Which Drug to Choose, Ticagrelor and Clopidogrel? A Systematic Review and Meta-Analysis of Randomized Controlled Trials

    Get PDF
    Background: A new generation P2Y12 receptor inhibitor (ticagrelor) is recommended in current therapeutic guidelines to treat patients with coronary heart disease (CHD). However, it is unknown if ticagrelor is more effective than clopidogrel in elderly patients. Therefore, a systematic review was done to assess the effectiveness and safety of ticagrelor and clopidogrel in older patients with CHD to determine the appropriate antiplatelet treatment plan. Methodology: We performed a systematic review of randomized controlled trials (RCTs) to compare the effectiveness and safety of ticagrelor vs. clopidogrel in elderly patients with CHD. We selected eligible RCTs based on specified study criteria following a systematic search of PubMed and Scopus databases from January 2007 to May 2021. Primary efficacy outcomes assessed were major adverse cardiovascular events (MACEs), myocardial infarction (MI), stent thrombosis (ST), and all-cause death. The secondary outcome assessed was major bleeding events. We used RevMan 5.3 software to conduct a random-effects meta-analysis and estimated the pooled incidence and risk ratios (RRs) with 95% confidence intervals (CIs) for ticagrelor and clopidogrel. Results: Data from 6 RCTs comprising 21,827 elderly patients were extracted according to the eligibility criteria. There was no significant difference in the MACE outcome (incidence: 9.23% vs. 10.57%; RR = 0.95, 95% CI = 0.70–1.28, p = 0.72), MI (incidence: 5.40% vs. 6.23%; RR = 0.94, 95% CI= 0.69–1.27, p = 0.67), ST (incidence: 2.33% vs. 3.17%; RR = 0.61, 95% CI= 0.32–1.17, p = 0.13), and all-cause death (4.29% vs. 5.33%; RR = 0.86, 95% CI = 0.65–1.12, p = 0.25) for ticagrelor vs. clopidogrel, respectively. In addition, ticagrelor was not associated with a significant increase in the rate of major bleeding (incidence: 9.98% vs. 9.33%: RR = 1.37, 95% CI = 0.97–1.94, p = 0.07) vs. clopidogrel. Conclusions: This study did not find evidence that ticagrelor is significantly more effective or safer than clopidogrel in elderly patients with CHD

    Global fertility in 204 countries and territories, 1950–2021, with forecasts to 2100: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundAccurate assessments of current and future fertility—including overall trends and changing population age structures across countries and regions—are essential to help plan for the profound social, economic, environmental, and geopolitical challenges that these changes will bring. Estimates and projections of fertility are necessary to inform policies involving resource and health-care needs, labour supply, education, gender equality, and family planning and support. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 produced up-to-date and comprehensive demographic assessments of key fertility indicators at global, regional, and national levels from 1950 to 2021 and forecast fertility metrics to 2100 based on a reference scenario and key policy-dependent alternative scenarios. MethodsTo estimate fertility indicators from 1950 to 2021, mixed-effects regression models and spatiotemporal Gaussian process regression were used to synthesise data from 8709 country-years of vital and sample registrations, 1455 surveys and censuses, and 150 other sources, and to generate age-specific fertility rates (ASFRs) for 5-year age groups from age 10 years to 54 years. ASFRs were summed across age groups to produce estimates of total fertility rate (TFR). Livebirths were calculated by multiplying ASFR and age-specific female population, then summing across ages 10–54 years. To forecast future fertility up to 2100, our Institute for Health Metrics and Evaluation (IHME) forecasting model was based on projections of completed cohort fertility at age 50 years (CCF50; the average number of children born over time to females from a specified birth cohort), which yields more stable and accurate measures of fertility than directly modelling TFR. CCF50 was modelled using an ensemble approach in which three sub-models (with two, three, and four covariates variously consisting of female educational attainment, contraceptive met need, population density in habitable areas, and under-5 mortality) were given equal weights, and analyses were conducted utilising the MR-BRT (meta-regression—Bayesian, regularised, trimmed) tool. To capture time-series trends in CCF50 not explained by these covariates, we used a first-order autoregressive model on the residual term. CCF50 as a proportion of each 5-year ASFR was predicted using a linear mixed-effects model with fixed-effects covariates (female educational attainment and contraceptive met need) and random intercepts for geographical regions. Projected TFRs were then computed for each calendar year as the sum of single-year ASFRs across age groups. The reference forecast is our estimate of the most likely fertility future given the model, past fertility, forecasts of covariates, and historical relationships between covariates and fertility. We additionally produced forecasts for multiple alternative scenarios in each location: the UN Sustainable Development Goal (SDG) for education is achieved by 2030; the contraceptive met need SDG is achieved by 2030; pro-natal policies are enacted to create supportive environments for those who give birth; and the previous three scenarios combined. Uncertainty from past data inputs and model estimation was propagated throughout analyses by taking 1000 draws for past and present fertility estimates and 500 draws for future forecasts from the estimated distribution for each metric, with 95% uncertainty intervals (UIs) given as the 2·5 and 97·5 percentiles of the draws. To evaluate the forecasting performance of our model and others, we computed skill values—a metric assessing gain in forecasting accuracy—by comparing predicted versus observed ASFRs from the past 15 years (2007–21). A positive skill metric indicates that the model being evaluated performs better than the baseline model (here, a simplified model holding 2007 values constant in the future), and a negative metric indicates that the evaluated model performs worse than baseline. FindingsDuring the period from 1950 to 2021, global TFR more than halved, from 4·84 (95% UI 4·63–5·06) to 2·23 (2·09–2·38). Global annual livebirths peaked in 2016 at 142 million (95% UI 137–147), declining to 129 million (121–138) in 2021. Fertility rates declined in all countries and territories since 1950, with TFR remaining above 2·1—canonically considered replacement-level fertility—in 94 (46·1%) countries and territories in 2021. This included 44 of 46 countries in sub-Saharan Africa, which was the super-region with the largest share of livebirths in 2021 (29·2% [28·7–29·6]). 47 countries and territories in which lowest estimated fertility between 1950 and 2021 was below replacement experienced one or more subsequent years with higher fertility; only three of these locations rebounded above replacement levels. Future fertility rates were projected to continue to decline worldwide, reaching a global TFR of 1·83 (1·59–2·08) in 2050 and 1·59 (1·25–1·96) in 2100 under the reference scenario. The number of countries and territories with fertility rates remaining above replacement was forecast to be 49 (24·0%) in 2050 and only six (2·9%) in 2100, with three of these six countries included in the 2021 World Bank-defined low-income group, all located in the GBD super-region of sub-Saharan Africa. The proportion of livebirths occurring in sub-Saharan Africa was forecast to increase to more than half of the world's livebirths in 2100, to 41·3% (39·6–43·1) in 2050 and 54·3% (47·1–59·5) in 2100. The share of livebirths was projected to decline between 2021 and 2100 in most of the six other super-regions—decreasing, for example, in south Asia from 24·8% (23·7–25·8) in 2021 to 16·7% (14·3–19·1) in 2050 and 7·1% (4·4–10·1) in 2100—but was forecast to increase modestly in the north Africa and Middle East and high-income super-regions. Forecast estimates for the alternative combined scenario suggest that meeting SDG targets for education and contraceptive met need, as well as implementing pro-natal policies, would result in global TFRs of 1·65 (1·40–1·92) in 2050 and 1·62 (1·35–1·95) in 2100. The forecasting skill metric values for the IHME model were positive across all age groups, indicating that the model is better than the constant prediction. InterpretationFertility is declining globally, with rates in more than half of all countries and territories in 2021 below replacement level. Trends since 2000 show considerable heterogeneity in the steepness of declines, and only a small number of countries experienced even a slight fertility rebound after their lowest observed rate, with none reaching replacement level. Additionally, the distribution of livebirths across the globe is shifting, with a greater proportion occurring in the lowest-income countries. Future fertility rates will continue to decline worldwide and will remain low even under successful implementation of pro-natal policies. These changes will have far-reaching economic and societal consequences due to ageing populations and declining workforces in higher-income countries, combined with an increasing share of livebirths among the already poorest regions of the world. FundingBill & Melinda Gates Foundation
    corecore