19 research outputs found

    Percutaneous elastic intramedullary nailing of metacarpal fractures: Surgical technique and clinical results study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We reviewed our results and complications of using a pre-bent 1.6 mm Kirschner wire (K-wire) for extra-articular metacarpal fractures. The surgical procedure was indicated for angulation at the fracture site in a true lateral radiograph of at least 30 degrees and/or in the presence of a rotatory deformity.</p> <p>Methods</p> <p>A single K-wire is pre-bent in a lazy-S fashion with a sharp bend at approximately 5 millimeters and a longer smooth curve bent in the opposite direction. An initial entry point is made at the base of the metacarpal using a 2.5 mm drill by hand. The K-wire is inserted blunt end first in an antegrade manner and the fracture reduced as the wire is passed across the fracture site. With the wire acting as three-point fixation, early mobilisation is commenced at the metacarpo-phalangeal joint in a Futuro hand splint.</p> <p>The wire is usually removed with pliers post-operatively at four weeks in the fracture clinic.</p> <p>Results</p> <p>We studied internal fixation of 18 little finger and 2 ring finger metacarpal fractures from November 2007 to August 2009. The average age of the cohort was 25 years with 3 women and 17 men. The predominant mechanism was a punch injury with 5 diaphyseal and 15 metacarpal neck fractures. The time to surgical intervention was a mean 13 days (range 4 to 28 days). All fractures proceeded to bony union. The wire was extracted at an average of 4.4 weeks (range three to six weeks). At an average follow up of 8 weeks, one fracture had to be revised for failed fixation and three superficial wound infections needed antibiotic treatment.</p> <p>Conclusions</p> <p>With this simple and minimally invasive technique performed as day-case surgery, all patients were able to start mobilisation immediately. The general outcome was good hand function with few complications.</p

    Functional salvage of a mangled lower limb using custom-made endoprosthetic replacement

    Get PDF
    Functional salvage of a severely injured extremity is a challenge for the patient and the treating surgeon. We report a case of a woman presenting with severely injured lower limb and bone loss, which was managed using a custom-made endoprosthetic replacement for successful functional outcome. Despite being complicated by bone loss, nerve injury and infection; a planned staged surgical treatment and rehabilitation have resulted in satisfactory outcome. At 3-year follow-up, the functional score according to the Musculoskeletal Tumor Society-International Symposium on Limb Salvage System was 70% and the Toronto Extremity Salvage Score was 62%. Endoprosthetic replacements may have a limited role in managing selected patients with mangled extremity and can lead to a good functional outcome to these patients

    Congestion Detection and Mitigation Technique for Multi-Hop Communication in WSN

    Get PDF
    The primary function of a network system is to gather information from the observation region and transmit it to the base station. The network life span and congestion are the two major concerns in wireless networks. To enhance the lifespan of the sensor system; multi-hopping has been proved as best in class. Congestion is an important factor to be taken, where multiple nodes forward data to one another in the process of communication. Hence to overcome the issue of congestion in WSN, we proposed a congestion detection and mitigation method along with the multi-hop concept. In this technique, we have considered different routes among communication units that were classified on distance, relative attainment rate (RAR) and node storage occupancy. A utility function (U) has been proposed and calculated using the above illustrated factors for every node that acts as a neighbour to the transmitting node. Neighbour node with highest U-valued will be considered as the packet forwarding node's next hop. In this manner congestion free nodes are selected for data transmission

    Token Bucket Algorithm with Modernization Techniques to Avoid Congestion in DEC Protocol of Wsn

    Get PDF
    A wireless sensor system is an essential aspect in many fields. It consists of a great deal of sensor nodes. These sensor networks carry out a number of tasks, including interaction, distribution, recognition, and power supply. Data is transmitted from source to destination and plays an important role. Congestion may occur during data transmission from one node to another and also at cluster head locations. Congestion will arise as a result of either traffic division or resource allocation. Energy will be wasted due to traffic division congestion, which causes packet loss and retransmission of removed packets. As a result, it must be simplified; hence there are a few Wireless sensor networks with various protocols that will handle Congestion Control. The Deterministic Energy Efficient Clustering (DEC) protocol, which is fully based on residual energy and the token bucket method, is being investigated as a way to increase the energy efficiency. In the event of congestion, our proposal provides a way to cope with it and solves it using this method to improve lifespan of the sensor networks. Experiments in simulation show that the proposed strategy can significantly enhance lifetime, energy, throughput, and packet loss

    Computational fluid dynamics study of pull and plug flow boundary condition on nasal airflow

    Get PDF
    The recent advances in the computer based computational fluid dynamics (CFD) software tools in the study of airflow behavior in the nasal cavity have opened an entirely new field of medical research. This numerical modeling method has provided both engineers and medical specialists with a clearer understanding of the physics associated with the flow in the complicated nasal domain. The outcome of any CFD investigation depends on the appropriateness of the boundary conditions applied. Most researchers have employed plug boundary condition as against the pull flow which closely resembles the physiological phenomenon associated with the breathing mechanism. A comparative study on the effect of using the plug and pull flow boundary conditions are evaluated and their effect on the nasal flow are studied. Discretization error estimation using Richardson's extrapolation (RE) method has also been carried out. The study is based on the numerical model obtained from computed tomographic data of a healthy Malaysian subject. A steady state Reynold averaged Navier–Stokes and continuity equations is solved for inspiratory flow having flow rate 20 L/min representing turbulent boundary conditions. Comparative study is made between the pull and plug flow model. Variation in flow patterns and flow features such as resistance, pressure and velocity are presented. At the nasal valve, the resistance for plug flow is 0.664 Pa-min/L and for pull flow the value is 0.304 Pa-min/L. The maximum velocity at the nasal valve is 3.28 m/s for plug flow and 3.57 m/s for pull flow model

    A comprehensive introduction to the genetic basis of non-syndromic hearing loss in the Saudi Arabian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hearing loss is a clinically and genetically heterogeneous disorder. Mutations in the <it>DFNB1 </it>locus have been reported to be the most common cause of autosomal recessive non-syndromic hearing loss worldwide. Apart from <it>DFNB1</it>, many other loci and their underlying genes have also been identified and the basis of our study was to provide a comprehensive introduction to the delineation of the molecular basis of non-syndromic hearing loss in the Saudi Arabian population. This was performed by screening <it>DFNB1 </it>and to initiate prioritized linkage analysis or homozygosity mapping for a pilot number of families in which <it>DFNB1 </it>has been excluded.</p> <p>Methods</p> <p>Individuals from 130 families of Saudi Arabian tribal origin diagnosed with an autosomal recessive non-syndromic sensorineural hearing loss were screened for mutations at the <it>DFNB1 </it>locus by direct sequencing. If negative, genome wide linkage analysis or homozygosity mapping were performed using Affymetrix GeneChip<sup>® </sup>Human Mapping 250K/6.0 Arrays to identify regions containing any known-deafness causing genes that were subsequently sequenced.</p> <p>Results</p> <p>Our results strongly indicate that <it>DFNB1 </it>only accounts for 3% of non-syndromic hearing loss in the Saudi Arabian population of ethnic ancestry. Prioritized linkage analysis or homozygosity mapping in five separate families established that their hearing loss was caused by five different known-deafness causing genes thus confirming the genetic heterogeneity of this disorder in the kingdom.</p> <p>Conclusion</p> <p>The overall results of this study are highly suggestive that underlying molecular basis of autosomal recessive non-syndromic deafness in Saudi Arabia is very genetically heterogeneous. In addition, we report that the preliminary results indicate that there does not seem to be any common or more prevalent loci, genes or mutations in patients with autosomal recessive non-syndromic hearing loss in patients of Saudi Arabian tribal origin.</p
    corecore