8,007 research outputs found

    Identity and Access Management System: a Web-Based Approach for an Enterprise

    Get PDF
    Managing digital identities and access control for enterprise users and applications remains one of the greatest challenges facing computing today. An attempt to address this issue led to the proposed security paradigm called Identity and Access Management (IAM) service based on IAM standards. Current approaches such as Lightweight Directory Access Protocol (LDAP), Central Authentication Service (CAS) and Security Assertion Markup Language (SAML) lack comprehensive analysis from conception to physical implementation to incorporate these solutions thereby resulting in impractical and fractured solutions. In this paper, we have implemented Identity and Access Management System (IAMSys) using the Lightweight Directory Access Protocol (LDAP) which focuses on authentication, authorization, administration of identities and audit reporting. Its primary concern is verification of the identity of the entity and granting correct level of access for resources which are protected in either the cloud environment or on-premise systems. A phased approach methodology was used in the research where it requires any enterprise or organization willing to adopt this must carry out a careful planning and demonstrated a good understanding of the technologies involved. The results of the experimental evaluation indicated that the average rating score is 72.0 % for the participants involved in this study. This implies that the idea of IAMSys is a way to mitigating security challenges associated with authentication, authorization, data protection and accountability if properly deployed

    A quantitative analysis and performance study of fast congestion notification (FN) mechanism

    Get PDF
    Congestion in computer network happens when the number of transmission requests exceeds the transmission capacity at a certain network point (called a bottle-neck resource) at a specific time. Congestion usually causes buffers overflow and packets loss. The purpose of congestion management is to maintain a balance between the transmission requests and the transmission capacity so that the bottle-neck resources operate on an optimal level, and the sources are offered service in a way that assures fairness. Fast Congestion Notification (FN) is one of the proactive queue management mechanisms that limits the queuing delay and achieves the maximum link utilization possible with minimum packet drops. In this paper we present a detailed performance comparison of the Linear FN algorithm to RED based on the results obtained through simulations. The paper shows how FN can be tuned for different window size (Ws) and periods of time constant (T) to achieve higher link utilization; reduce the queuing delay, and lower packet drop ratio

    An Alternative Identification of the Economic Shocks in SVAR Models

    Get PDF
    The purpose of this paper is to develop a new approach allowing us to identify the structural shocks in the SVAR model. This approach ameliorates substantially the decomposition methods of Bernanke (1986) and Bernanke & Mihov (1998) and improves in the same way the identification procedures pioneered by Blanchard & Quah (1989) and Blanchard & Perotti (2002).SVAR, Economic Shocks, Nonlinearity, Viability, Trajectories, Differential Inclusion.

    Integrating Antenatal and Postnatal Pregnancy Services to Hospital Management System

    Get PDF
    Antenatal and postnatal processes and services is a component of Hospital Management Systems that has been given very little attention. Most healthcare institution carries out the antenatal and postnatal processes manually and keeps records of the whole processes on paper. In most cases in most hospital, records kept on paper and files get missing or misplaced leading to the loss of important records of clients which would have been very helpful for future pregnancies and clinical diagnosis. Report generation and statistical figures are difficult to generate with the manual based system. Data errors, security, and privacy are another problems associated with the manual system. In this paper, the antenatal and postnatal services were incorporated into the Hospital Management System of Usmanu Danfodiyo University, Sokoto with a view to reducing the issues and inconsistencies encountered with the manual procedure. Dreamweaver, PHP, CSS, JavaScript, Ajax, HTML and MySQL are the technological tools used to automate the incorporated antenatal and postnatal services in the system. The usefulness of the proposed system was evaluated using the System Usability Scale (SUS) questionnaire and some clinical users. The experimental evaluation shows that the developed system is beneficial to the clinic and the general public based on the result obtained in this study. The results also demonstrated that the developed system can fit into the antenatal and postnatal routine of many hospitals with little or no modification

    A numerical study of entropy generation, heat and mass transfer in boundary layer flows.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.This study lies at the interface between mathematical modelling of fluid flows and numerical methods for differential equations. It is an investigation, through modelling techniques, of entropy generation in Newtonian and non-Newtonian fluid flows with special focus on nanofluids. We seek to enhance our current understanding of entropy generation mechanisms in fluid flows by investigating the impact of a range of physical and chemical parameters on entropy generation in fluid flows under different geometrical settings and various boundary conditions. We therefore seek to analyse and quantify the contribution of each source of irreversibilities on the total entropy generation. Nanofluids have gained increasing academic and practical importance with uses in many industrial and engineering applications. Entropy generation is also a key factor responsible for energy losses in thermal and engineering systems. Thus minimizing entropy generation is important in optimizing the thermodynamic performance of engineering systems. The entropy generation is analysed through modelling the flow of the fluids of interest using systems of differential equations with high nonlinearity. These equations provide an accurate mathematical description of the fluid flows with various boundary conditions and in different geometries. Due to the complexity of the systems, closed form solutions are not available, and so recent spectral schemes are used to solve the equations. The methods of interest are the spectral relaxation method, spectral quasilinearization method, spectral local linearization method and the bivariate spectral quasilinearization method. In using these methods, we also check and confirm various aspects such as the accuracy, convergence, computational burden and the ease of deployment of the method. The numerical solutions provide useful insights about the physical and chemical characteristics of nanofluids. Additionally, the numerical solutions give insights into the sources of irreversibilities that increases entropy generation and the disorder of the systems leading to energy loss and thermodynamic imperfection. In Chapters 2 and 3 we investigate entropy generation in unsteady fluid flows described by partial differential equations. The partial differential equations are reduced to ordinary differential equations and solved numerically using the spectral quasilinearization method and the bivariate spectral quasilinearization method. In the subsequent chapters we study entropy generation in steady fluid flows that are described using ordinary differential equations. The differential equations are solved numerically using the spectral quasilinearization and the spectral local linearization methods

    Polyspectral Signal Analysis Techniques For Condition Based Maintenance of Helicopter Drive-Train System

    Get PDF
    For an efficient maintenance of a diverse fleet of air- and rotorcraft, effective condition based maintenance (CBM) must be established based on rotating components monitored vibration signals. In this dissertation, we present theory and applications of polyspectral signal processing techniques for condition monitoring of critical components in the AH-64D helicopter tail rotor drive train system. Currently available vibration-monitoring tools are mostly built around auto- and cross-power spectral analysis which have limited performance in detecting frequency correlations higher than second order. Studying higher order correlations and their Fourier transforms, higher order spectra, provides more information about the vibration signals which helps in building more accurate diagnostic models of the mechanical system. Based on higher order spectral analysis, different signal processing techniques are developed to assess health conditions of different critical rotating-components in the AH-64D helicopter drive-train. Based on cross-bispectrum, quadratic nonlinear transfer function is presented to model second order nonlinearity in a drive-shaft running between the two hanger bearings. Then, quadratic-nonlinearity coupling coefficient between frequency harmonics of the rotating shaft is used as condition metric to study different seeded shaft faults compared to baseline case, namely: shaft misalignment, shaft imbalance, and combination of shaft misalignment and imbalance. The proposed quadratic-nonlinearity metric shows better capabilities in distinguishing the four studied shaft settings than the conventional linear coupling based on cross-power spectrum. We also develop a new concept of Quadratic-Nonlinearity Power-Index spectrum, QNLPI(f), that can be used in signal detection and classification, based on bicoherence spectrum. The proposed QNLPI(f) is derived as a projection of the three-dimensional bicoherence spectrum into two-dimensional spectrum that quantitatively describes how much of the mean square power at certain frequency f is generated due to nonlinear quadratic interaction between different frequency components. The proposed index, QNLPI(f), can be used to simplify the study of bispectrum and bicoherence signal spectra. It also inherits useful characteristics from the bicoherence such as high immunity to additive Gaussian noise, high capability of nonlinear-systems identifications, and amplification invariance. The quadratic-nonlinear power spectral density PQNL(f) and percentage of quadratic nonlinear power PQNLP are also introduced based on the QNLPI(f). Concept of the proposed indices and their computational considerations are discussed first using computer generated data, and then applied to real-world vibration data to assess health conditions of different rotating components in the drive train including drive-shaft, gearbox, and hanger bearing faults. The QNLPI(f) spectrum enables us to gain more details about nonlinear harmonic generation patterns that can be used to distinguish between different cases of mechanical faults, which in turn helps to gaining more diagnostic/prognostic capabilities

    Affordable interactive virtual reality system for the Dynamic Hip Screw surgery training in vitro

    Get PDF
    Interactive virtual reality systems provide safe and cost-effective training environment to improve the technical skills and competence of surgeons. The trainees can have as many practice sessions, without need to the trainer all the time, before even start carrying out the procedure on any real patient. In this paper, we present an affordable interactive virtual reality system for the Dynamic Hip Screw (DHS) surgery training in vitro, through 3D tracking. The system facilitates a safe (in vitro / off patient) training to improve the cognitive coordination of trainees and junior surgeons, in particular the Hands, Eyes and Brain coordination. The system is based on very cheap commercial off-the-shelf (COT) components, which are very affordable, and needs minimum setup effort and knowledge. It also provides a range of visual and quantitative feedback information and measures, such as position, orientation, insertion point, and depth of drilling. It is envisaged that improving this level of coordination, through the training system, will contribute to reducing the failure rate of the DHS procedure. This means better treatment for patients and less costs for the Health services systems (e.g. UK's NHS system)

    Synthesis and control of attosecond light transients

    Get PDF

    To what extent do the legal restrictions on non-government organizations in Egypt undermine NGOs\u27 ability to achieve their goals?

    Get PDF
    The Egyptian civil society is the biggest civil society in the region. The current law governing non-government organizations (NGOs) in Egypt is Law 84 of 2002. This law is considered by several scholars as highly restrictive law. Non-government organizations in Egypt have faced legal restrictions on their operations and struggled for years to meet the requirements of this law. This research assesses the impact of the law on Egyptian NGO operations and their ability to pursue their missions effectively. Six areas of impact were explored based on a typology of regulatory impact adapted from the literature. Several non-government organizations were interviewed to explore and analyze the difficulties that are hindering these NGOs from achieving their goals. A written questionnaire and interviews were conducted with human rights and educational/services non-government organizations to collect detailed information about the difficulties they are facing under the current law. This exploratory research points to differences between human rights and educational/service NGOs in problems they confront in compliance with Law 84
    corecore