38 research outputs found

    Physicochemical Characteristics of Saudi Arabian Locally Produced Raw and Diluted Honeys and Their Relations to Antimicrobial Activity

    Get PDF
    The physicochemical characteristics and antibacterial activity of Saudi Arabia honeys were studied for the first time. The levels of free and total acidity, pH, ash and moisture content were in the range 1.6 ±0.17 - 15.1 ±0.1 meq/kg, 2.77 ± 0.06 - 5.37 ±0.04, 1.1 ±0.02 ñ€“ 1.7 ±0.03 % and < 18.0 %, respectively. Lovibond comparator color scale (P, mm) of samples was ranged from water white (P=0.0-1.3), extra light Amber (P=38.14-46.57), light Amber (P=60.39-75.54), Amber (P=86.72-110.08), dark (P=142.39-348.44) and very dark shade (P= 541.84).  Dark honeys showed excellent inhibitory effects against bacterial growth. Excellent correlation between color of raw and diluted (>10.0%m/v) honey and antimicrobial activity was noticed. Honey species from different floral sources possesñ€ℱ strong antioxidant and anti bacterial activities and are scavengers of active oxygen species.Â

    Thiazolidinone Steroids Impregnated Polyurethane Foams as a Solid Phase Extractant for the Extraction and Preconcentration of Cadmium(II) from Industrial Wastewater

    Get PDF
    Abstract: Two new thiazolidinone steroids namely sulfadiazino-imino-steroid (I) and 3-sulfonamoyl-phenyl-spiro[4-oxo-thiazolidin-2, 2`steroid] (II) were prepared and characterized from their molecular weight determination and spectroscopic measurements. Compound II were physically immobilized onto polyurethane foams (PUFs) for the preconcentration of cadmium(II) from acidic aqueous media containing iodide ions. The kinetics of the retention step of cadmium(II) from aqueous solutions by compound II treated PUFs was studied. Particle diffusion was the most probable operating mechanism and did not control the kinetics of cadmium(II) retention by compound II immobilized PUFs. A preconcentration / separation procedure is presented for the solid phase extraction of trace cadmium(II) from aqueous media as its ternary complex ion associate with compound II in industrial wastewater samples onto compound II treated PUFs prior to determination by flame atomic absorption spectrometry (FAAS). Compound II treated PUFs sorbent was successfully packed in glass column for complete extraction and / or determination of trace concentrations of cadmium(II) in wastewater samples with satisfactory recovery (95 ±2.6). The cyclic voltammetry of compound II showed two well defined irreversible redox couples and suggested its possible use as complexing agent in stripping voltammetric determination of trace concentrations of toxic metal ions in wastewater

    Mechanisms of silver nanoparticle toxicity to the coastal marine diatom Chaetoceros curvisetus

    Get PDF
    Inputs of silver nanoparticles (AgNPs) to marine waters continue to increase yet mechanisms of AgNPs toxicity to marine phytoplankton are still not well resolved. This study reports a series of toxicity experiments on a representative coastal marine diatom species Chaetoceros curvisetus using the reference AgNP, NM-300K. Exposure to AgNPs resulted in photosynthetic impairment and loss of diatom biomass in proportion to the supplied AgNP dose. The underlying mechanism of toxicity was explored via comparing biological responses in parallel experiments. Diatom responses to AgNP, free Ag(I) species, and dialysis bag-retained AgNP treatments showed marked similarity, pointing towards a dominant role of Ag(I) species uptake, rather than NPs themselves, in inducing the toxic response. In marked contrast to previous studies, addition of the organic complexing agent cysteine (Cys) alongside Ag only marginally moderated toxicity, implying AgCys− complexes were bioavailable to this diatom species. A preliminary field experiment with a natural phytoplankton community in the southeast Atlantic Ocean showed no significant toxic response at a NM-300 K concentration that resulted in ~40% biomass loss in the culture studies, suggesting a modulating effect of natural seawaters on Ag toxicity

    A Simple and Highly Structured Procaine Hydrochloride as Fluorescent Quenching Chemosensor for Trace Determination of Mercury Species in Water

    Get PDF
    An ultrasensitive, simple and highly selective spectrofluorometric strategy for quantifying traces of mercury(II) in environmental water has been established using the fluorescent probe procaine hydrochloride (PQ+.Cl−). The procedure was based upon the formation of the ternary ion associate complex [(PQ+)2.(HgI4)2−] between PQ+.Cl− and mercury(II) in iodide media at pH 9.0–10.0 with its subsequent extraction onto dichloromethane accompanied by a change in fluorescence intensity at λex/em = 268/333 nm. The developed strategy exhibited a linear range of 1–114 Όg L−1 with lower limit of detection (LOD) and quantification (LOQ) of mercury(II) 1.3 and 3.98 nM, respectively. Intra and inter-day laboratory accuracy and precision for trace analysis of mercury(II) in water were performed. Complexed mercury(II) in environmental water, chemical speciation and successful literature comparison was performed. The proposed system offered excellent selectivity towards mercury(II) ions examined in the presence of competent ions in excess, relevant to real water samples. The method was applied for analysis of mercury(II) in tap water samples. Statistical comparison (Student’s t and F tests) of the proposed method with the reference ICP-OES method revealed no significant differences in the accuracy and precision

    An Improved Method for Measuring Phthalates in Seawater With Blank Contamination Using GC-MS

    Get PDF
    Quantification of phthalates or phthalic acid esters (PAEs) might be problematic due to matrix overlap, auto-self absorbance and background scattering noise by the plastic lab materials although plastics have been reported in the release of PAEs. These materials (ambient air, reagents bottles, sampling devices, and various analytical instruments), are ubiquitous in the laboratory environment, thereby making it more difficult to reliably analyze of trace concentration of PAEs. Thus, in the current study, a straight forward and reliable protocol has been established for the analysis of PAEs including control of blank contamination, and the experimental conditions such as extraction time and temperature were optimized. The mass of PAEs in blank tests of selected materials ranged from 3±0.7 to 35±6 ng for liquid-liquid extraction (LLE) and from 5±1.8 to 63±15 ng for solid-phase extraction (SPE). For both extraction methods, higher blank values were measured for dibutyl phthalate (DBP) (35±6 ng, 12±3 ng), and DEHP (63±12 ng, 23±5 ng) in LLE and SPE, respectively. Average recoveries of PAEs in LLE were 90-97% and obtained with successive aliquots of 2 mL, 1 mL, and 1 mL dichloromethane (DCM). For SPE, recoveries up to 86-90% were achieved with successive aliquots of 5, 3, and 2 mL DCM at a sample flow rate of 5 mL min -1 . Under the optimized conditions, the method quantification limits (MQL) for PAEs was 10-20 ng L -1 for LLE and 10-35 ng L -1 for SPE. Moreover, the dissolved concentrations of PAEs from LDPE measured by the LLE method ranged < 1.5 to 5.83 ng cm -2, and those measured by SPE ranged from 1.0to256ngL -1 , in seawater samples of Sharm Obhur. The method has lower MQL values for LLE and SPE than average reported values of 10-100 ng L -1 and 30-100 ng L -1 , respectively

    Chromatographic Separation, Total Determination and Chemical Speciation of Mercury in Environmental Water Samples Using 4-(2-Thiazolylazo) Resorcinol-Based Polyurethane Foam Sorbent-Packed Column

    Get PDF
    A simple method has been developed for quantitative retention of traces of mercury(II) ions from aqueous media using polyurethane foams (PUFs) loaded with 4-(2-thiazolylazo) resorcinol (TAR). The kinetics and thermodynamics of the sorption of mercury(II) ions onto PUFs were studied. The sorption of mercury(II) ions onto PUF follows a first-order rate equation with k = 0.176 ± 0.010 min−1. The negative values of ΔH and ΔS may be interpreted as the exothermic chemisorption process and indicative of a faster chemisorption onto the active sites of the sorbent. The sorption data followed Langmuir, Freundlich and Dubinin-Radushkevich (D–R) isotherm models. The D-R parameters ÎČ, KDR and E were 0.329 mol2 kJ−2, 0.001 Όmol g−1 and 1.23 ± 0.07 kJ/mol for the TAR-loaded PUFs, respectively. An acceptable retention and recovery (99.6 ± 1.1%) of mercury(II) ions in water at ≀10 ppb by the TAR-treated PUFs packed columns were achieved. A retention mechanism, involving absorption related to “solvent extraction” and an “added component” for surface adsorption, was suggested for the retention of mercury(II) ions by the used solid phase extractor. The performance of TAR-immobilized PUFs packed column in terms of the number (N), the height equivalent to a theoretical plate (HETP), the breakthrough and critical capacities of mercury(II) ion uptake by the sorbent packed column were found to be 50.0 ± 1.0, 1.01 ± 0.02 mm, 8.75 and 13.75 mg/g, respectively, at 5 mL/min flow rate

    Effect of polymer coating composition on the aggregation rates of Ag nanoparticles in NaCl solutions and seawaters

    Get PDF
    The aggregation behaviour of polymer-coated silver nanoparticles (AgNPs) was characterized in NaCl solutions, and in two seawaters of different salinities and dissolved organic matter (DOM) contents. Representative organic coatings i.e. tannic acid (TA), alginic acid (ALG), two gum Arabic samples (GAL and GAH), branched polyethylenimine (BPEI), and non-ionic surfactants (reference material NM-300K) were selected to cover a wide range of zeta-potentials. The stability in NaCl solutions, as determined from the rate of variation in hydrodynamic size within a timeframe of one hour, followed the order BPEI ≫ NM-300K ≈ GAL ≫ ALG ≈ TA ≫ GAH. In the seawater samples the order was NM-300K ≈ GAL ≫ ALG > GAH > TA ≈ BPEI, and only TA, GAL and NM-300K batches behaved as expected from the NaCl experiments. Remarkably, the BPEI sample showed the largest aggregation rate in the seawater sample with the highest DOM concentration (277 ÎŒM C). The GAH sample displayed a non-monotonic variation in aggregation rate with NaCl concentration, apparently due to concomitant precipitation of AgCl. The results indicate that non-electrostatic stabilization mechanisms and DOM-coating interactions are important for the prediction of stability and persistence of polymer-coated AgNPs in seawater

    Effect of polymer coating composition on the aggregation rates of Ag nanoparticles in NaCl solutions and seawaters

    No full text
    The aggregation behaviour of polymer-coated silver nanoparticles (AgNPs) was characterized in NaCl solutions, and in two seawaters of different salinities and dissolved organic matter (DOM) contents. Representative organic coatings i.e. tannic acid (TA), alginic acid (ALG), two gum Arabic samples (GAL and GAH), branched polyethylenimine (BPEI), and non-ionic surfactants (reference material NM-300K) were selected to cover a wide range of zeta-potentials. The stability in NaCl solutions, as determined from the rate of variation in hydrodynamic size within a timeframe of one hour, followed the order BPEI ≫ NM-300K ≈ GAL ≫ ALG ≈ TA ≫ GAH. In the seawater samples the order was NM-300K ≈ GAL ≫ ALG > GAH > TA ≈ BPEI, and only TA, GAL and NM-300K batches behaved as expected from the NaCl experiments. Remarkably, the BPEI sample showed the largest aggregation rate in the seawater sample with the highest DOM concentration (277 ÎŒM C). The GAH sample displayed a non-monotonic variation in aggregation rate with NaCl concentration, apparently due to concomitant precipitation of AgCl. The results indicate that non-electrostatic stabilization mechanisms and DOM-coating interactions are important for the prediction of stability and persistence of polymer-coated AgNPs in seawater
    corecore