39 research outputs found

    Liposome Delivery Systems for Inhalation: A Critical Review Highlighting Formulation Issues and Anticancer Applications

    Get PDF
    This was a critical review on research conducted in the field of pulmonary delivery of liposomes. Issues related to mechanism of the nebulization and liposome composition were appraised and correlated with the literature reports of liposome formulations used in clinical trials to understand the role of liposome size and composition on therapeutic outcome. A major highlight was the liposome inhalation for the treatment of lung cancers. Many in-vivo studies that explored the potential of liposomes as anticancer carrier systems were evaluated including animal studies and clinical trials. Liposomes can entrap anticancer drugs and localize their action in the lung following pulmonary delivery. Safety of inhaled liposomes incorporating anticancer drug depends on the anticancer agent used and the amount of drug delivered to the target cancer in the lung. The difficulty of efficient targeting of liposomal anticancer aerosols to the cancerous tissues within the lung may result in low dose reaching the target site. Overall, following the success of liposomes as inhalable carriers in the treatment of lung infections, it is expected that more focus from research and development will be given to designing inhalable liposome carriers for the treatment of other lung diseases including pulmonary cancers. Successful development of anticancer liposomes for inhalation may depend on future development of effective aerosolization devices and better targeted liposomes to maximize benefit of therapy and reduce potential of local and systemic adverse effects

    Proliposome powder or tablets for generating inhalable liposomes using a medical nebulizer

    Get PDF
    Purpose: The aim of this study was to develop and compare proliposome powder and proliposome tablet formulations for drug delivery from a Pari-LC Sprint nebulizer. Methods: Proliposome powders were prepared by the slurry method and sorbitol or mannitol carbohydrate carrier were used in a 1:10 and 1:15 w/w lipid phase to carrier ratio. Beclometasone dipropionate (BDP; 2 mol%) was incorporated in the lipid phase. Proliposome powders were compressed into tablets, and liposomes were generated from proliposome powders or tablets within the nebulizer reservoir for subsequent aerosolization. Results: Comparatively, shorter sputtering times were reported for the tablet formulations (≈ < 2.7±0.45 min), indicating uniform aerosolization. Post-nebulization, liposomes size was larger in the nebulizer reservoir in the range of 7.79±0.48 µm–9.73±1.53 µm for both powder and tablet formulations as compared to freshly prepared liposomes (5.38±0.73 µm–5.85±0.86 µm), suggesting liposome aggregation/fusion in the nebulizer’s reservoir. All formulations exhibited more than 80% mass output regardless of formulation type, but greater BDP proportions (circa 50%) were delivered to the Two-stage Impinger when tablet formulations were used. Moreover, the nebulized droplet median size and size distribution were lower for all tablet formulations in comparison to the powder formulations. Proliposome tablet and powdered formulations demonstrated the ability to generate vesicles that sustained the release of BDP. Conclusion: Overall, this study showed that proliposome tablets could be disintegrated within a Pari-LC Sprint nebulizer to generate inhalable aerosol, with high drug output and hence can be manufactured on large scale to overcome the storage problems associated with powder formulations

    Paclitaxel loaded lipid nanoemulsions for the treatment of brain tumour

    Get PDF
    Description to be added.Cannot be left empt

    Development and characterisation of disulfiram-loaded PLGA nanoparticles for the treatment of non-small cell lung cancer

    Get PDF
    Non-Small Cell Lung Cancer (NSCLC) is the most common type of lung cancer in both men and women. A recent phase IIb study demonstrated that disulfiram (DSF) in combination with cisplatin and vinorelbine was well tolerated and prolonged the survival of patients with newly diagnosed NSCLC. However, DSF is rapidly (4 min) metabolised in the bloodstream and it is this issue which is limiting its anticancer application in the clinic. We have recently demonstrated that a low dose of DSF-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles supplemented with oral Cu inhibited tumour growth and reduced metastasis in a xenograft mouse lung cancer model. Here we demonstrate the influence of PLGA polymer, stabilizer loading and molecular weight as well as sonication time on the characteristics, including DSF release and the cytotoxicity of 10% w/w DSF-loaded PLGA nanoparticles. The paper demonstrates that the choice of PLGA as no significance on the characteristics of the nanoparticles apart from their DSF release, which is due to the differing degradation rates of the polymers. However, increasing the loading and molecular weight of the stabilizer as well as the sonication time reduced the size of the nanoparticles, reduced their ability to protect the DSF from reacting with Cu and degrading in serum, while increasing their DSF release rate and cytotoxicity. Additionally, increasing the sonication time resulted in the premature degradation of the PLGA, which increased the permeability of the nanoparticles further decreasing their ability to protect DSF from reacting with Cu and degrading in serum, while increasing their DSF release rate and cytotoxicity

    Sunscreens containing cyclodextrin inclusion complexes for enhanced efficiency : a strategy for skin cancer prevention

    Get PDF
    Unprotected exposure of skin to solar ultraviolet radiation (UVR) may damage the DNA of skin cells and can lead to skin cancer. Sunscreens are topical formulations used to protect skin against UVR. The active ingredients of sunscreens are UV filters that absorb, scatter, and/or reflect UVR. Preventing the formation of free radicals and repairing DNA damages, natural antioxidants are also added to sunscreens as a second fold of protection against UVR. Antioxidants can help stabilise these formulations during the manufacturing process and upon application on skin. However, UV filters and antioxidants are both susceptible to degradation upon exposure to sunlight and oxygen. Additionally, due to their poor water solubility, natural antioxidants are challenging to formulate and exhibit limited penetration and bioavailability in the site of action (i.e., deeper skin layers). Cyclodextrins (CDs) are cyclic oligosaccharides that are capable of forming inclusion complexes with poorly soluble drugs, such as antioxidants. In this review, we discuss the use of CDs inclusion complexes to enhance the aqueous solubility of antioxidants and chemical UV filters and provide a protective shield against degradative factors. The role of CDs in providing a controlled drug release profile from sunscreens is also discussed. Finally, incorporating CDs inclusion complexes into sunscreens has the potential to increase their efficiency and hence improve their skin cancer prevention

    Comparative Study on the Outcome of Periorbital Wrinkles Treated with Laser-Assisted Delivery of Vitamin C or Vitamin C Plus Growth Factors: A Randomized, Double-blind, Clinical Trial

    Get PDF
    Background: Despite promising results, laser-assisted drug delivery (LADD) is not yet considered as standard therapies and published data rely mainly on laboratory tests, animal experiments or cadaver skin. Objectives: This double-blind, prospective, randomized clinical trial investigates the impact in topical application of vitamin C and a cosmeceutical containing growth factors (GFs) on periorbital wrinkles primarily treated with laser skin resurfacing. Material and Methods: In total, 149 female patients with periorbital wrinkles were consented and randomized into two study groups, R-C (receiving vitamin C only) and R-CGF (receiving vitamin C and a cosmeceutical containing growth factors). The statistical analysis evaluated the efficacy of each treatment regimen using software readouts provided by a three-dimensional stereophotogrammetry system prior to treatment and three months after the procedure. Results were compared to confirm if there was a significant change in the skin roughness and the average depth of the wrinkles between the two groups after treatment. Results: There was a significant reduction in both skin roughness and average depth of the wrinkles in the group treated with vitamin C and growth factors (p <0.01) than those treated with LADD followed by topical application of vitamin C alone. There were no cutaneous reactions or adverse systemic reactions observed in this study related to LADD with vitamin C and GFs. Conclusion: Controlled laser application might have a great potential to facilitate the absorption of exogenous macromolecules by the skin. Periorbital wrinkles were reduced in both groups, but LADD using vitamin C and GFs provided significantly better results

    Spray-Dried Proliposome Microparticles for High-Performance Aerosol Delivery Using a Monodose Powder Inhaler

    Get PDF
    Proliposome formulations containing salbutamol sulphate (SS) were developed using spray drying, and the effects of carrier type (lactose monohydrate (LMH) or mannitol) and lipid to carrier ratio were evaluated. The lipid phase comprised soy phosphatidylcholine (SPC) and cholesterol (1:1), and the ratios of lipid to carrier were 1:2, 1:4, 1:6, 1:8 or 1:10 w/w. X-ray powder diffraction (XRPD) revealed an interaction between the components of the proliposome particles, and scanning electron microscopy (SEM) showed that mannitol-based proliposomes were uniformly sized and spherical, whilst LMH-based proliposomes were irregular and relatively large. Using a two-stage impinger (TSI), fine particle fraction (FPF) values of the proliposomes were higher for mannitol-based formulations, reaching 52.6%, which was attributed to the better flow properties when mannitol was used as carrier. Following hydration of proliposomes, transmission electron microscopy (TEM) demonstrated that vesicles generated from mannitol-based formulations were oligolamellar, whilst LMH-based proliposomes generated 'worm-like' structures and vesicle clusters. Vesicle size decreased upon increasing carrier to lipid ratio, and the zeta potential values were negative. Drug entrapment efficiency (EE) was higher for liposomes generated from LMH-based proliposomes, reaching 37.76% when 1:2 lipid to carrier ratio was used. The in vitro drug release profile was similar for both carriers when 1:6 lipid to carrier ratio was used. This study showed that spray drying can produce inhalable proliposome microparticles that can generate liposomes upon contact with an aqueous phase, and the FPF of proliposomes and the EE offered by liposomes were formulation-dependent

    The cytotoxic mechanisms of disulfiram and copper(ii) in cancer cells

    Get PDF
    The anticancer activity of disulfiram (DS) is copper(II) (Cu)-depen-dent. This study investigated the anticancer mechanisms of DS/Cuusingin vitrocytotoxicity and metabolic kinetic analysis. Our studyindicates that DS/Cu targets cancer cells by the combination oftwo types of actions: (1) instant killing executed by DS/Cu reactiongenerated reactive oxygen species; (2) delayed cytotoxicity intro-duced by the end product, DDC-Cu. Nanoencapsulation of DSmight shed light on repositioning of DS into cancer treatment

    Preparation and Characterization of Disulfiram and Beta Cyclodextrin Inclusion Complexes for Potential Application in the Treatment of SARS-CoV-2 via Nebulization

    Get PDF
    Disulfiram (DS), known as an anti-alcoholism drug, has shown a potent antiviral activity. Still, the potential clinical application of DS is limited by its low water solubility and rapid metabolism. Cyclodextrins (CDs) have been widely used to improve the solubility of drugs in water. In this study, five concentrations of hydroxypropyl β-cyclodextrin (HP) and sulfobutyl ether β-cyclodextrin (SBE) were used to form inclusion complexes of DS for enhanced solubility. Solutions were freeze-dried, and the interaction between DS and CD was characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). In addition, the nebulization properties of the DS–CD solutions were studied. The aqueous solubility of DS increased significantly when loaded to either of both CDs. The phase solubility of both complexes was a linear function of the CD concentration (AL type). Furthermore, physicochemical characterization studies showed a potent inclusion of the drug in the CD–DS complexes. Aerosolization studies demonstrated that these formulations are suitable for inhalation. Overall, the CD inclusion complexes have great potential for the enhancement of DS solubility. However, further studies are needed to assess the efficacy of DS–CD inclusion complexes against SARS-CoV-2 via nebulization
    corecore