127 research outputs found

    A new predictive equation for estimating wave period of subaerial solid-block landslide-generated waves

    Get PDF
    In the aftermath of the deadly 2018 Anak Krakatau tsunami (Indonesia) and associated confusions over its modeling and generation mechanism, there has been an urgent need for further studies to improve our understanding of landslide-generated tsunamis. Two important factors in accurate modeling of landslide tsunamis are the wave period and the initial wave amplitude. Here, we apply a physical modeling approach and develop an empirical equation to predict the dominant wave period generated by solid-block subaerial landslide tsunamis. Fifty-one laboratory experiments are conducted at different water depths and using four different concrete blocks for the sliding masses. The results are consequently employed to derive a predictive equation for the wave period of solid-block subaerial landslide tsunamis. An innovation of this study is that we apply data from different scales (laboratory and field scales) to produce our predictive equation. For field data, the data from the 2018 Anak Krakatau event is used. We compared our predictive equation with other previously-published equations. To confirm the validity of our predictive equation, it is applied for the prediction of the wave period of an independent landslide tsunami event whose data was not used for the derivation of the equation

    Extratropical cyclone damage to the seawall in Dawlish, UK:eyewitness accounts, sea level analysis and numerical modelling

    Get PDF
    Availability of data: All data used in this study are provided in the body of the article.Copyright © The Author(s) 2022. The February 2014 extratropical cyclonic storm chain, which impacted the English Channel (UK) and Dawlish in particular, caused significant damage to the main railway connecting the south-west region to the rest of the UK. The incident caused the line to be closed for two months, £50 million of damage and an estimated £1.2bn of economic loss. In this study, we collate eyewitness accounts, analyse sea level data and conduct numerical modelling in order to decipher the destructive forces of the storm. Our analysis reveals that the disaster management of the event was successful and efficient with immediate actions taken to save lives and property before and during the storm. Wave buoy analysis showed that a complex triple peak sea state with periods at 4–8, 8–12 and 20–25 s was present, while tide gauge records indicated that significant surge of up to 0.8 m and wave components of up to 1.5 m amplitude combined as likely contributing factors in the event. Significant impulsive wave force of up to 286 KN was the most likely initiating cause of the damage. Reflections off the vertical wall caused constructive interference of the wave amplitudes that led to increased wave height and significant overtopping of up to 16.1 m3/s/m (per metre width of wall). With this information and our engineering judgement, we conclude that the most probable sequence of multi-hazard cascading failure during this incident was: wave impact force leading to masonry failure, loss of infill and failure of the structure following successive tides.UK Engineering and Physical Sciences Research Council (EPSRC) through a PhD scholarship to Keith Adams

    Extratropical cyclone damage to the seawall in Dawlish, UK:eyewitness accounts, sea level analysis and numerical modelling

    Get PDF
    The February 2014 extratropical cyclonic storm chain, which impacted the English Channel (UK) and Dawlish in particular, caused significant damage to the main railway connecting the south-west region to the rest of the UK. The incident caused the line to be closed for two months, £50 million of damage and an estimated £1.2bn of economic loss. In this study, we collate eyewitness accounts, analyse sea level data and conduct numerical modelling in order to decipher the destructive forces of the storm. Our analysis reveals that the disaster management of the event was successful and efficient with immediate actions taken to save lives and property before and during the storm. Wave buoy analysis showed that a complex triple peak sea state with periods at 4–8, 8–12 and 20–25 s was present, while tide gauge records indicated that significant surge of up to 0.8 m and wave components of up to 1.5 m amplitude combined as likely contributing factors in the event. Significant impulsive wave force of up to 286 KN was the most likely initiating cause of the damage. Reflections off the vertical wall caused constructive interference of the wave amplitudes that led to increased wave height and significant overtopping of up to 16.1 m3/s/m (per metre width of wall). With this information and our engineering judgement, we conclude that the most probable sequence of multi-hazard cascading failure during this incident was: wave impact force leading to masonry failure, loss of infill and failure of the structure following successive tides.</p

    A new dual earthquake and submarine landslide source model for the 28 September 2018 Palu (Sulawesi), Indonesia tsunami

    Get PDF
    The September 2018 Palu (Sulawesi, Indonesia) tsunami has been a heavily debated event because multiple source models of three different types have been proposed for this tsunami: (i) The M w 7.5 earthquake, (ii) landslides, and (iii) dual earthquake and landslide. Surprisingly, all of these three types of models were reported as being successful in the literature in terms of reproducing the existing tsunami observations. This can be partly attributed to the limited observations available for this tsunami. This study is motivated by the results of a marine bathymetric survey, which identified evidence for submarine landslides within the Palu Bay. Our modeling shows that the tsunami cannot be exclusively attributed to the M w 7.5 earthquake. Inspired by the results of the marine survey, we propose a dual source model including a submarine landslide although most of the existing models include subaerial coastal landslides. Our dual model comprises an earthquake model, which has a length of 264 km, a width of 37 km, and a slip of 0–8.5 m, combined with a submarine landslide with a length of 1.0 km, a width of 2.0 km, and a thickness of 80.0 m located at 119.823°E and −0.792°S.</p

    A New Tsunami Hazard Assessment for Eastern Makran Subduction Zone by Considering Splay Faults and Applying Stochastic Modeling

    Get PDF
    Tsunami hazard imposed by possible rupture of splay faults is important as it may significantly intensify tsunami heights locally. The Makran Subduction Zone (MSZ) in the northwestern Indian Ocean can generate large thrust earthquakes that could trigger significant tsunamis. In this paper, the effects of possible rupture of splay faults on the tsunami hazards of eastern MSZ are studied by developing a framework that uses stochastic earthquake rupture models and considers uncertainties related to rupture location, rupture geometry, seismic moment split ratio, earthquake slip asperity location within a fault plane, and earthquake slip heterogeneity. To quantify these uncertainties, 484 different parameter combinations of tsunami sources are considered systematically. The geometry of splay faults is developed using the most recent marine seismic surveys of the tectonic structure of the MSZ. A moment magnitude of 8.6 is considered as a scenario magnitude. The results of this study are generated in two parts, by considering average sources and stochastic sources. Results show significant local amplification of the maximum tsunami heights due to splay faults. For instance, the maximum wave height in Pasni, Pakistan can be amplified by a factor of four due to a single splay fault rupture scenario of average sources.</p

    Investigating the Impact of Market Power on Foreign Direct Investment Absorption in Concentrated and Unconcentrated Industries in Iran

    Get PDF
    The central purpose of this thesis is investigating the relationship between market structure and absorption of foreign direct investment in Iran manufacturing industries. Four firm concentration ratio and Herfindal-Hirschman index are used to measure market power. Analysis of these indexes determines the concentrated and monopoly in the market and also provides a good background for understanding the relationship between market structure with FDI. In other words, this research seeks to answer that the 10 industries in ISIC based on two-digit code in Iran industries during 1996 to 2008 have what market structure (concentrated or unconcentrated) and what effect it has on absorption of FDI. Using regression analysis and panel data model, estimation results of model showed that there is a negative relationship between concentrated market structure with absorption of FDI. In Iran industries there is a positive relationship between export and economic scales with FDI. Keywords: Foreign Direct Investment, Market Power, Market Structure

    Multi-level emulation of tsunami simulations over Cilacap, South Java, Indonesia

    Get PDF
    Carrying out a Probabilistic Tsunami Hazard Assessment (PTHA) requires a large number of simulations done at a high resolution. Statistical emulation builds a surrogate to replace the simulator and thus reduces computational costs when propagating uncertainties from the earthquake sources to the tsunami inundations. To reduce further these costs, we propose here to build emulators that exploit multiple levels of resolution and a sequential design of computer experiments. By running a few tsunami simulations at high resolution and many more simulations at lower resolutions we are able to provide realistic assessments whereas, for the same budget, using only the high resolution tsunami simulations do not provide a satisfactory outcome. As a result, PTHA can be considered with higher precision using the highest spatial resolutions, and for impacts over larger regions. We provide an illustration to the city of Cilacap in Indonesia that demonstrates the benefit of our approach
    • …
    corecore