

Citation for published version: Heidarzadeh, M & Mulia, IE 2022, 'A new dual earthquake and submarine landslide source model for the 28 September 2018 Palu (Sulawesi), Indonesia tsunami', *Coastal Engineering Journal*. https://doi.org/10.1080/21664250.2022.2122293

DOI: 10.1080/21664250.2022.2122293

Publication date: 2022

Link to publication

Publisher Rights CC BY

University of Bath

Alternative formats

If you require this document in an alternative format, please contact: openaccess@bath.ac.uk

General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

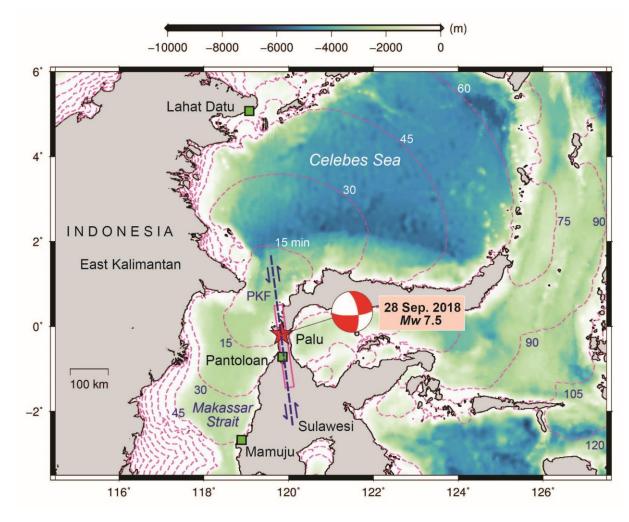
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	A new dual earthquake and submarine landslide source model for the
2	28 September 2018 Palu (Sulawesi), Indonesia tsunami
3	
4 5	Mohammad Heidarzadeh ^{*1} , Iyan E. Mulia ^{2,3}
6	
7	¹ Department of Architecture and Civil Engineering, University of Bath, Bath BA2 7AY, UK.
8	² Prediction Science Laboratory, RIKEN Cluster for Pioneering Research, 7-1-26 Minatojima-minami-
9	machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
10	³ Disaster Resilience Science Team, RIKEN Center for Advanced Intelligence Project, 1-4-1
11	Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
12	
13	
14	Published in: "Coastal Engineering Journal"
15	
16	https://doi.org/10.1080/21664250.2022.2122293
17	
18	* Correspondence to:
19	Mohammad Heidarzadeh, PhD
20	Associate Professor
21	Department of Architecture and Civil Engineering,
22 92	University of Bath, Bath BA2 7AY,
$\frac{23}{24}$	United Kingdom. Email: <u>mhk58@bath.ac.uk</u>
$\frac{24}{25}$	Website: https://researchportal.bath.ac.uk/en/persons/mohammad-heidarzadeh-kolaei
$\frac{25}{26}$	ORCID: https://orcid.org/0000-0002-1112-1276

27 Abstract (200 words)

The September 2018 Palu (Sulawesi, Indonesia) tsunami has been a heavily debated event because 2829multiple source models of three different types have been proposed for this tsunami: (i) The M_w 7.5 30 earthquake, (ii) Landslides, and (iii) Dual earthquake and landslide. Surprisingly, all of these three 31types of models were reported successful in the literature in terms of reproducing the existing tsunami 32observations. This can be partly attributed to the limited observations available for this tsunami. This 33 study is motivated by the results of a marine bathymetric survey, which identified evidence for 34submarine landslides within the Palu Bay. Our modelling shows that the tsunami cannot be exclusively attributed to the M_w 7.5 earthquake. Inspired by the results of the marine survey, we propose a dual 35source model including a submarine landslide although most of the existing models include subaerial 36 37coastal landslides. Our dual model comprises of an earthquake model, which has a length of 264 km, a 38 width of 37 km and a slip of 0 - 8.5 m, combined with a submarine landslide with a length of 1.0 km, 39 a width of 2.0 km and a thickness of 80.0 m located at 119.823 °E and -0.792 °S. 40

- 40
- 41


42 Keywords: Tsunami; Earthquake; Submarine Landslide; Palu; Numerical Modelling.

44 **1. Introduction**

45 The Palu city in Sulawesi of Eastern Indonesia was struck by a destructive tsunami following an M_w 7.5 strike-slip earthquake on 28 September 2018 (Figure 1), which together killed more than 4,000 46 47people. The earthquake origin time was reported as 10:02:45 (UTC) with a depth of 20.0 km and an 48 epicentre at -0.256°S and 119.846°E by the United States Geological Survey (USGS, 2018). The Palu 49 earthquake and tsunami produced the largest natural disaster in Indonesia following the 2004 Indian 50ocean tsunami. Some other natural disaster in Indonesia in the aftermath of the 2004 event are the July 512006 Pangandaran earthquake (M_w 7.7) and tsunami with over 800 deaths (Fujii and Satake, 2006), the 52October 2010 Mentawai earthquake (M_w 7.7) and tsunami with 408 fatalities (Satake et al., 2013, 2020), and the December 2018 Anak Krakatau volcano tsunami with over 450 casualties (Grilli et al., 53542021; Heidarzadeh et al., 2020; Mulia et al., 2020). 55Possibly the 2018 Palu tsunami could be considered as one of the most debated tsunamis in terms of its source mechanism in the past few decades because different types of source models and in a 56large number have been proposed for this event, which sometimes contradict each other. Some of these 5758models are given in Table 1. While some authors attributed the tsunami to only its earthquake source (an M_w 7.5 strike-slip event), others completely ignored the earthquake source of the event and 5960 proposed that the tsunami was due to landslides (Table 1). Approximately four years after the 2018 61 Palu event and thanks to several field works and numerous modelling efforts, it is possibly fair to

62 claim that there is a consensus in the tsunami community that the 2018 Palu tsunami was the result of

63	a dual source, i.e., combined earthquake and landslide. There are several evidence for both co-seismic
64	crustal deformation (e.g., field surveys by Natawidjaja et al., 2021) and submarine/subaerial landslides
65	(e.g., marine surveys by Frederik et al., 2019; coastal surveys of Takagi et al., 2019, Aránguiz et al.
66	2020 and Liu et al., 2020). Despite multiple efforts (Table 1) to characterise the earthquake and
67	landslide sources of the tsunami separately, the topic is still open, and more research efforts are
68	required as recommended by some authors listed in Table 1. Therefore, the purpose of this research is
69	to offer a realistic dual source model that is able to satisfactorily reproduce the existing tsunami
70	observations (i.e., tide gauges and runup surveys) and address some of the shortcomings (discussed in
71	the next Section) of the existing source models. We use data from the bathymetric survey of Frederik
72	et al. (2019) to identify a potential submarine landslide source responsible for the Palu event combined
73	with published seismic source models to propose our dual model. We apply numerical modelling to
74	validate our source model through comparing tsunami modelling results with observed tide gauge data
75	and surveyed runup heights.

Figure 1. Map showing Eastern Indonesia, the site of the 28 September 2018 Palu (Sulawesi)

earthquake and tsunami. The red star indicates the epicenter of the earthquake, the green squares
are the locations of tide gauge stations, and the dashed contours show the tsunami travel times
(TTT) in minutes calculated using the TTT software of Geoware (2011). The Palu-Koro strike-slip
fault system (PKF) is shown by a dashed thick straight line. The focal mechanism is based on the
United States Geological Survey (USGS) catalogue. The pink rectangle demonstrates the fault
extension for the 2018 Palu earthquake based on Lee et al. (2019).

77

86 2. A brief review of existing source models and our objectives

87 There have been extensive controversies in the past few years over the source mechanism of the

88 2018 Palu earthquake and tsunami and multiple hypotheses have been proposed. Three different types

89	of source models were proposed for this event (Table 1) comprising, (i) Only-earthquake models (i.e.,
90	the coseismic crustal deformation), (ii) Only-landslide models (i.e., submarine or subaerial mass
91	failures triggered by the earthquake), and (iii) Dual models (i.e., combined earthquake and landslide).
92	Heidarzadeh et al. (2019) were among the first authors who showed that the tsunami was most likely
93	the product of a combined earthquake and submarine landslide sources, and they approximated the
94	location of a potential submarine landslide. Tsunami inversion by Gusman et al. (2019) revealed that
95	an additional submarine landslide source is necessary to explain the observed inundation limits.
96	Among the only-landslide models are those proposed by Pakoksung et al. (2019) and Nakata et al.
97	(2020), who considered several hypothetical landslides and applied numerical modelling to show that
98	some of them could be possible. On the other hand, Ulrich et al. (2019) and Jamelot et al. (2019)
99	proposed models involving only earthquake ruptures. Among authors who proposed dual sources are
100	Heidarzadeh et al. (2019), Williamson et al. (2020) and Schambach et al. (2021) (Table 1).
101	Several field surveys were conducted following the event to record coastal tsunami heights and
102	damage (Muhari et al., 2018; Arikawa et al., 2018; Omira et al., 2019; Syamsidik et al., 2019). A
103	marine bathymetric survey was conducted by Frederik et al. (2019) following the event to map
104	potential bathymetric changes in the Palu Bay. Takagi et al. (2019) and Liu et al. (2020) mapped
105	several coastal landslides in the area through field surveys. All these field data of different types
106	confirmed that the tsunami source was most likely generated by a dual source, comprising the $M_{\rm w}$ 7.5
107	strike-slip earthquake and landslides (submarine or subaerial). However, the current knowledge on a

108	potential dual model for the 2018 Palu event is limited. There are three studies that proposed dual
109	models: Heidarzadeh et al. (2019), Williamson et al. (2020) and Schambach et al. (2021). The study by
110	Heidarzadeh et al. (2019) gives only the location of a potential submarine landslide without offering
111	its dimensions or details. The two latter models are based on onshore subaerial landslides in their dual
112	models with the exception that Williamson et al. (2020) also considered a hypothetical submarine
113	landslide at the location previously proposed by Heidarzadeh et al. (2019) (Table 1). While there is
114	evidence that such onshore subaerial landslides occurred (e.g., Takagi et al., 2019; Aránguiz et al.
115	2020; Liu et al., 2020), there are also evidence that submarine landslides were involved (e.g., marine
116	bathymetric survey of Frederik et al., 2019; Heidarzadeh et al., 2019). Therefore, the shortcomings of
117	the existing dual models are: (i) Credible submarine landslides are missing in existing dual models
118	although Heidarzadeh et al. (2019) proposed a hypothetical submarine landslide; and (ii) The
119	simulated waves from landslide sources within the existing dual models show a mix of short and long
120	waves as compared to the observed waveform in Pantoloan, and does not match the observations well.
121	Due to the relatively small sizes of coastal subaerial landslides, which result in some shorter-
122	period waves compared to observations in Pantoloan, it is likely that a large submarine landslide was
123	involved that could produce longer-period waves in Pantoloan. Marine surveys of Frederik et al.
124	(2019) give evidence for such a large submarine landslide. The purpose of this research is to consider
125	such a credible submarine landslide in our dual model. While we acknowledge that the dual source
126	models proposed by Heidarzadeh et al. (2019), Williamson et al. (2020) and Schambach et al. (2021)

127 are important contributions, this study seeks to further complement them by considering a potential

128 reliable submarine landslide.

- 129 It is important to note that due to the limited tsunami observation data for the 2018 Palu event,
- 130 many models of different types (earthquake, landslide and dual models) can reproduce the
- 131 observations. Therefore, the purpose of this study is not to discredit any of the published models.

132 Rather, we aim at offering an alternate dual model that is supported by existing observation data.

133

134 **Table 1.** A list of some of the published source models for the September 2018 Palu (Sulawesi)

- tsunami.
- 136

Type of source model	Author	Type of tsunami data for validation	Description			
	Ulrich et al. (2019)	Tide gauge and runup survey	A slip model is proposed based on teleseismic inversion			
	Jamelot et al. (2019)	Tide gauge and runup survey	A slip model is proposed based on optical image correla- tion, and the geological and tectonic context			
Earthquake	Bacques et al. (2020)	None	A slip model is proposed based on space-based geodetics measurements of the co-seismic displacement field			
-	Yolsal-Çevikbilen and Taymaz (2019)	None	A source model is proposed based on inversion of teleseismic body waves			
	He et al. (2019)	None	A slip model is proposed based on far-field InSAR, near- field SAR and optical sub-pixel correlation data			
	Lee et al. (2019)	None	A slip model is proposed based on teleseismic inversion			
	Pakoksung et al. (2019)	Tide gauge and runup survey	Ten landslide sources of various sizes (small and large) ae proposed, which are spread all along the Palu Bay.			
	Nakata et al. (2020)	Tide gauge and runup survey	Several models are tested. The preferred model is comprised of two landslides within the Palu Bay			
	Liu et al. (2020)	Tide gauge	Several coastal landslides are considered as the tsunami source			
Landslide	Nagai et al. (2021)	Tide gauge and runup survey	Several coastal landslides are considered as the tsunami source			
	Somphong et al. (2022)	Tide gauge and runup survey	Several submarine and coastal landslides are considered as the tsunami source			
	Aránguiz et al. (2020)	Tide gauge	A few landslides are considered as the source			
	Takagi et al. (2019)	Eyewitnesses	A landslide was considered as the source			
Dual (earthquake and Heidarzadeh et al. (2019) Tide gauge		Tide gauge	The tsunami is modelled based on a coseismic slip model and it was shown that an additional submarine landslide source is necessary. The location for the submarine			

landslide)			landslide is determined as south of the Palu Bay.
	Schambach et al. (2021)	Tide gauge and runup survey	A combination of a coseismic slip model and several coastal landslides is considered as the dual model.
	Williamson et al. (2020)	Tide gauge and runup survey	A combination of a coseismic slip model, several coastal landslides, and a hypothetical submarine landslide (at the location previously proposed by Heidarzadeh et al. 2019) is considered as the dual model
	This study	Tide gauge and runup survey	A combination of a coseismic slip model and a single submarine landslide is considered as the dual model

138 **3. Data and methods**

139 The data used in this study comprises tide gauge records and runup heights of the tsunami, seismic

140 source models for the 2018 Palu earthquake published by other studies, and the bathymetric survey

141 data of the Palu Bay in the aftermath of the tsunami acquired by the marine survey of Frederik et al.

- 142 (2019).
- 143 Tide gauge data of the tsunami at three stations (Pantoloan, Mamuju and Lahat Datu) (Figure 1),

144 are used in this study. The records of Pantoloan and Mamuju are provided by the Indonesia Agency for

- 145 Geo-spatial Information (<u>http://big.go.id</u>) whereas that of Lahat Datu is from the sea level monitoring
- 146 facility of the Intergovernmental Oceanographic Commission
- 147 (http://www.iocsealevelmonitoring.org/). All sea level data are sampled at 1 min intervals. These sea
- 148 level records were previously analysed and de-tided by Heidarzadeh et al. (2019) (Figure 2b).
- 149 For the seismic source models of the event, we use three models published by USGS (2018),
- 150 Jamelot et al. (2019) and Wang et al. (2019) (Table 2). We acknowledge that multiple seismic source
- 151 models were published for the 2018 Palu earthquake by different authors in the past few years (Table

152	1). Here, we use three of such source models in order to test a range of models and compare their
153	performances in reproducing the observations. Table 2 gives the fault parameters for these three
154	models, indicating that the maximum slip values for them are 8.5 m (USGS, 2018), 8.0 m (Jamelot
155	et al., 2019), and 3.9 m (Wang et al., 2019). Here, the dislocation model of Okada (1985) is used to
156	calculate coseismic crustal deformation using the fault parameters listed in Table 2 for the three
157	earthquake source models (Figure 2a). The calculated crustal deformations (Figure 2a) are used as
158	initial conditions for tsunami modelling.
159	For defining the submarine landslide source models in this study, we use data from the actual post-
160	event marine bathymetric surveys conducted by Frederik et al. (2019), who identified some potential
161	landslides within the Palu Bay although the survey was unable to find clear evidence of recent land-
162	sliding associated with the 2018 Palu event. Consistent with the previous results by Heidarzadeh et al.
163	(2019), who reported two potential submarine landslide locations in the north (latitude of -0.67 °S) and
164	middle (latitude of -0.82 °S) of the Palu Bay, Frederik et al. (2019) also reported two potential
165	submarine landslide locations in the north and middle of the bay. By considering the results of several
166	post-event tsunami runup and height surveys (e.g., Muhari et al., 2018; Arikawa et al., 2018; Omira et
167	al., 2019; Syamsidik et al., 2019), it is very likely that the potential submarine landslide source was
168	located around the middle of the bay because it is the location of the largest surveyed runup heights
169	(Heidarzadeh et al., 2019). Therefore, from the study of Frederik et al. (2019), here we only consider
170	the potential landslide from the middle of the bay. In addition, we ignore the onshore subaerial

171	landslides in our study by assuming that the effects of such onshore landslides are negligible as
172	compared to those of a large submarine landslide. However, we acknowledge that multiple onshore
173	subaerial landslides occurred during the 2018 Palu event (e.g., Takagi et al., 2019).
174	Two transects of a potential landslide located around the middle of the Palu Bay (approximately
175	119.823 °E and -0.792 °S) are reported by Frederik et al. (2019) with a slope angle of $11 - 13^{\circ}$ and
176	thickness of 55 – 70 m. The two transects are distanced approximately 1,000 m. The length and width
177	of the landslide cannot be precisely extracted from the report of Frederik et al. (2019) because the field
178	data are limited; however, they can help us to approximate the length and width of the submarine
179	landslide. Considering bathymetric data of Frederik et al. (2019), we assume the length of the
180	landslide in the range of 500 – 1,000 m and consider two scenarios LS-1 (length of 1,000 m) and LS-2
181	(length of 500 m) in order to consider the uncertainty of length estimation in our study and to conduct
182	a sensitivity analysis (Table 3). In fact, a length in the range of 500 – 1,000 m appears meaningful
183	given the results of bathymetric surveys of Frederik et al. (2019); however, the final length is
184	determined by comparing simulated waveforms with observations. The width of the landslide is
185	considered as 2,000 m for both LS-1 and LS-2 scenarios guided by the field data of Frederik et al.
186	(2019). Inspired by the marine survey of Frederik et al. (2019), landslide thicknesses of 80 m and 40 m
187	are considered for LS-1 and LS-2, respectively (Table 3).
188	To generate the initial sea surface displacement due to submarine landslides, we apply the
100	

189 empirical equations of Watts et al. (2005), which are based on studies previously conducted by

190	Synolakis et al. (2002), Satake and Tanioka (2003), and Okal and Synolakis (2004). Figure 3a shows
191	the initial sea surface displacement due to the two landslide scenarios, which are employed as initial
192	conditions for tsunami simulations. Landslide tsunami modelling based on the empirical equations of
193	Synolakis et al. (2002) and Watts et al. (2005) is a static modelling approach, which implies that the
194	dynamic landslide generation process is overlooked. It has been shown by several authors that such an
195	approach is successful in reproducing past landslide tsunami events (e.g., Synolakis et al., 2002;
196	Tappin et al., 2008; Heidarzadeh and Satake, 2015, 2017).
197	Tsunami modelling in this study is performed applying the numerical package COMCOT (Cornell
198	Multi-grid Coupled Tsunami model) (Wang and Liu, 2006), which solves linear and nonlinear Shallow
199	water Equations on Cartesian and Spherical bathymetric and topographic grids. Nonlinear equations
200	were used in this study. We used the bathymetric and topographic grid provided by GEBCO (The
201	General Bathymetric Chart of the Oceans), which has an original spatial resolution of 15 arc-sec
202	(Weatherall et al., 2015). A single uniformly-spaced bathymetric grid with grid spacing of 10 arc-sec is
203	used in this study, which is re-sampled from the original GEBCO grid in order to provide a smaller
204	grid spacing for guaranteeing the stability of numerical computations. A grid size of 10 arcsec is
205	equivalent to approximately 300 m (around earth latitude of zero). By knowing that the sea surface
206	displacement field, according to the equations by Watts et al. (2005), is approximately three times of
207	the landslide dimensions, the grid size of 10 arcsec (300 m) implies that there are at least nine or 10
208	grid points for each landslide source (Figure 3a). Therefore, the resolution of the computational grid is

209	sufficient to carry out the computations. A time step of 0.5 s was employed to guarantee the stability of
210	the numerical scheme based on the Courant-Friedrichs-Lewy criterion (Courant et al., 1928). The total
211	simulation time was 4.5 h. To avoid uncertainties associated with wave amplitudes during nonlinear
212	wave inundation on dry land, in this study we used tsunami amplitudes at the 1-m water depth contour
213	as approximations of tsunami runup heights (e.g., Tinti et al., 2006; Pranantyo et al., 2021).
214	Three types of simulations were conducted: (i) Simulations based on the earthquake source of the
215	tsunami for three candidate earthquake models EQ-1, EQ-2 and EQ-3 as listed in Table 2 and shown in
216	Figure 2a; (ii) Simulation using two landslide sources LS-1 and LS-2 (Table 3, Figure 3a); (iii)
217	Simulations for dual (combined earthquake and landslide) sources, Dual-1 and Dual-2, where the
218	earthquake and landslide sources are superimposed simultaneously (Table 4; Figure 4a). The basis for
219	defining our dual models is explained in the next section. For modelling dual sources, it is assumed
220	that the earthquake and the submarine landslide occur simultaneously.
221	To measure the qualities of fit between observations (O_i) and simulations (S_i) , we use the misfit
222	equation developed by Heidarzadeh et al. (2022):
223	$\epsilon = \frac{1}{N} \sum_{i=1}^{N} (O_i - S_i)^2 $ (1)
224	
225	where, $i = 1, 2, 3,, N$ is a counter for the points on a time series, O_i is an observation reading, S_i is
226	the corresponding simulation reading, and N is the total number of points in the time series. When

227 simulations coincide with observations (a perfect match), ϵ becomes zero, otherwise it increases by an

228 increase in mismatch between observations and simulations. We applied only the first tsunami wave in

229 each station for misfit calculations.

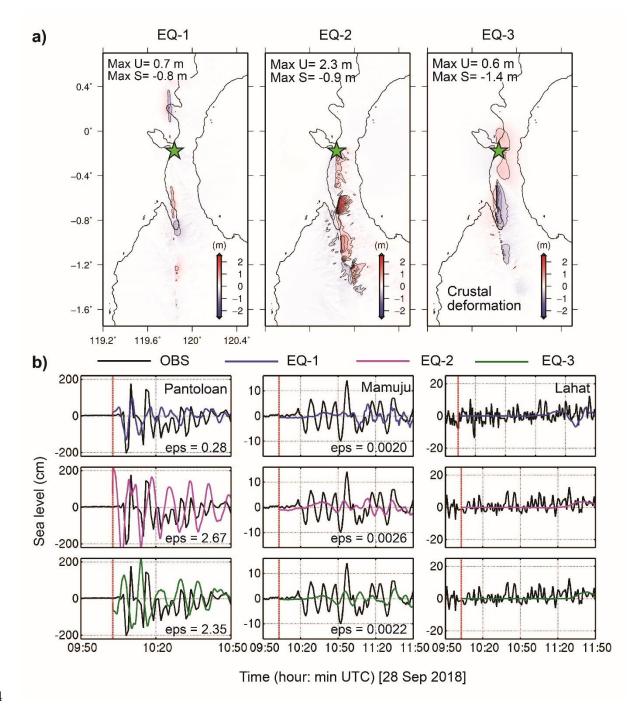
Table 2. Earthquake source models used in this study for modelling the 28 September 2018 Palu

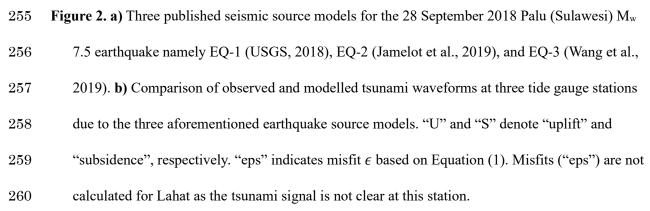
233 (Sulawesi) earthquake and tsunami.

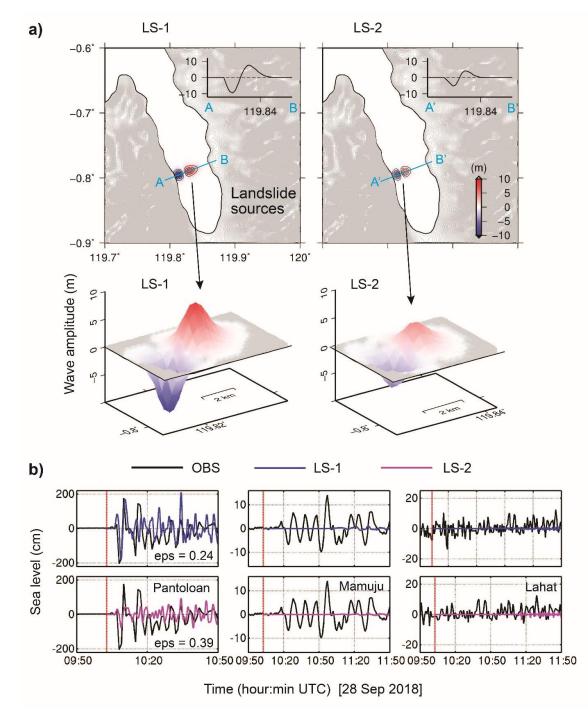
Model name	Author	Length (km)	Width (km)	Strike (°)	Dip (°)	Rake (°)	Depth (km)	Slip (m)
EQ-1	USGS (2018)	264	37	358.0	66.0	320.0 - 390.0	0.8 - 32.8	0-8.5
EQ-2	Jamelot et al. (2019)	138	12	2-357	45 - 69	11.0 - 38.0	$5.6 - 6.3^{*}$	4.5 – 8
EQ-3	Wang et al. (2019)	210	20	316 - 359	67	(-99.1) – 179.3	0-25.2	0-3.9

*: For the source model proposed by Jamelot et al. (2019), the depths of the centre of the fault segments are

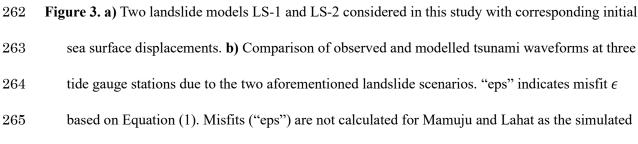
237 reported.


- Table 3. Parameters of the two landslide scenarios considered in this study for modelling the 28
- 242 September 2018 Palu (Sulawesi) tsunami.


Name	Long. ¹ (°E)	Lat. ² (°S)	Water depth (m)	Slope (°)	Length (m)	Width (m)	Thick. ³ (m)	Max. initial depr. ⁴ (m)	Max. initial elev. ⁵ (m)
LS-1	119.823	-0.792	500	12	1000	2000	80	9.7	7.8
LS-2	119.823	-0.792	500	12	500	2000	40	5.4	4.1


¹: Longitude; ²: Latitude; ³: Thickness of the landslide; ⁴: Maximum initial sea surface depression; ⁵: Maximum
²⁴⁶ initial sea surface elevation.

- 250 Table 4. Information of two dual earthquake and landslide source models considered in this study for
- 251 modelling the 28 September 2018 Palu (Sulawesi) tsunami.
- 252


Name of the dual model	Components of the dual model				
ivame of the dual model	Earthquake model	Landslide model			
Dual-1	EQ-1	LS-1			
Dual-2	EQ-1	LS-2			

waves are very small at these stations.

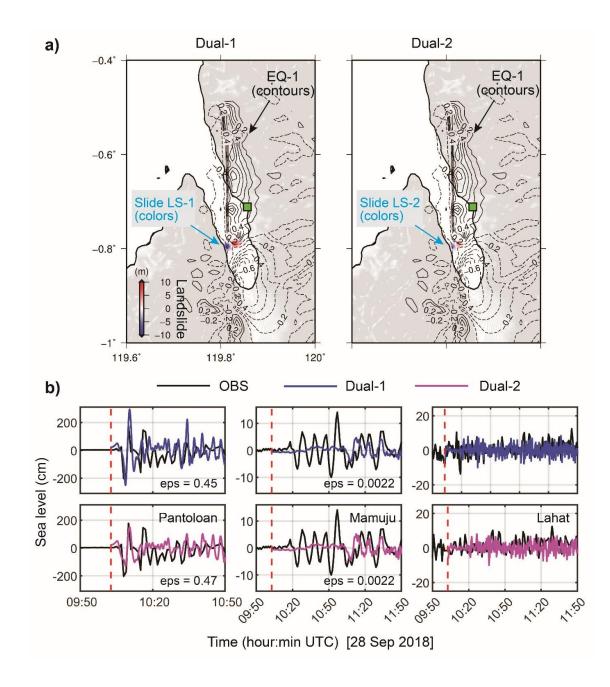


Figure 4. a) Two dual (combined earthquake and submarine landslide) source models Dual-1 and Dual-2, which are the combination of EQ-1 with LS-1 and LS-2, respectively, with corresponding crustal deformation and initial sea surface displacements. b) Comparison of observed and modelled tsunami waveforms at three tide gauge stations due to the two aforementioned dual source models. "eps" indicates misfit ϵ based on Equation (1). Misfits ("eps") are not calculated for Lahat as the tsunami signal is not clear at this station.

4. Modelling results and analysis

In this section, we compare modelling results with available observations of the 2018 Palu 278279tsunami. Despite great importance of the 2018 Palu tsunami, the existing observation data of the 280tsunami is limited. In the near-field, two tide gauge observations are available at Pantoloan and 281Mamuju (Figure 1); however, the Mamuju record is outside of the Palu Bay and thus is most likely 282unaffected by the waves from the landslide source of the tsunami as the landslide waves are mostly 283confined within the Palu Bay (Heidarzadeh et al., 2019). In addition, the Mamuju record has a clock 284error of approximately 1 h. The Lahat Datu (abbreviated as "Lahat") tide gauge station, located 285approximately 600 km to the north of epicentre, does not show any tsunami signal (Figure 2b). The 286other observation available for the Palu tsunami is data of tsunami runup height surveys conducted by several authors following the tsunami (e.g., Arikawa et al. 2018; Muhari et al., 2018; Omira et al., 2872882019). 289Before we discuss the results of simulations, it is helpful to note that, because the existing 290observation data of the Palu event is very limited, they can be reproduced by different types of source models. This is the reason that a large number of source models with different combinations have been 291proposed so far for this event (Table 1). Possibly the truth about the source mechanism of the 2018 292293Palu event may not emerge until high-resolution bathymetric and seismic surveys, accompanied with 294seafloor coring of the Palu Bay, are conducted.

- 295
- 296

297 4.1 Performance of the earthquake source models (EQ-1, -2, and -3)

298	Comparisons of the simulated waveforms and coastal heights from the three earthquake source
299	models are shown in Figures 2b and 5, respectively. Among the three earthquake models, Figure 2b
300	reveals that EQ-1 performs better compared to EQ-2 and -3 as the misfit resulting from EQ-1 at the
301	Pantoloan station (eps = 0.28) is significantly smaller than that from EQ-2 (eps = 2.67) and EQ-3 (eps
302	= 2.35). All the three earthquake models are unsuccessful in reproducing the Mamuju tide gauge
303	record in terms of wave amplitudes and arrival times. Heidarzadeh et al. (2019) speculated that either
304	the Mamuju tide gauge record has a clock error, or the early tsunami waves were due to a secondary
305	source such as a submarine landslide that occurred outside of the Palu Bay. Regarding the Lahat Datu
306	station, all models produce very small waves. It is important to note that the EQ-1 model reproduces
307	the initial phase and the period of the observation, but fails in matching the amplitude. All three
308	models significantly underestimate the surveyed runup (Figure 5). These are strong evidence that
309	indicate a secondary source (e.g., coseismic landslide) was most likely involved.
310	
311	4.2 Performance of the landslide source models (LS-1 and LS-2)
312	Although it is clear that the 2018 Palu event was due to a dual source (combined earthquake and
313	landslide), here we present the simulation results of candidate landslide models with the aim of
314	understanding the nature of waves generated by submarine landslides. The simulation results for two
315	candidate landslide scenarios (LS-1 and LS-2) are shown in Figures 3b and 6. The model LS-2
316	significantly underestimates the Pantoloan tide gauge record (Figure 3b) and coastal heights (Figure

317	6). The misfit resulting from LS-1 at the Pantoloan station is 0.24 whereas it is 0.39 for LS-2 (Figure
318	3). However, the purpose of this section is not to rule out any of the LS-1 or LS-2 scenarios because
319	although they may not reproduce the observations, it is likely that a combination of them with an
320	earthquake model could reproduce the observations. This is discussed in the next section.
321	
322	4.3 Performance of the dual source models (Dual-1 and Dual-2)
323	For our dual model, we combine the earthquake model EQ-1 with the two landslide models LS-1
324	and LS-2 and produce two dual models: Dual-1 and Dual-2 (Table 4). The basis for choosing EQ-1 for
325	making the dual models is that EQ-1 is the only earthquake model that successfully reproduces the
326	initial phases of the observed tsunami on the Pantoloan tide gauge (Figure 2b). Simulation results for
327	the dual models reveal that the model Dual-1 slightly overestimates the observed tide gauge waveform
328	(Figure 4b) and slightly underestimates the surveyed runup heights (Figure 6). However, its
329	performance is far better than that of the model Dual-2. In terms of waveform match at the Pantoloan
330	station, model Dual-1 gives a misfit of 0.45 whereas Dual-2 results in a misfit of 0.47 (Figure 4). For
331	runup, the misfits are 5.75 for Dual-1 and 7.68 for Dual-2 (Figure 6). It is noted that our model Dual-1
332	underestimates some runup measurement points including a few locations at the southwest of the Palu
333	Bay. By considering uncertainties associated with field measurements of runup heights and numerical
334	simulations, we may conclude that model Dual-1 can approximately reproduce the observations.
335	

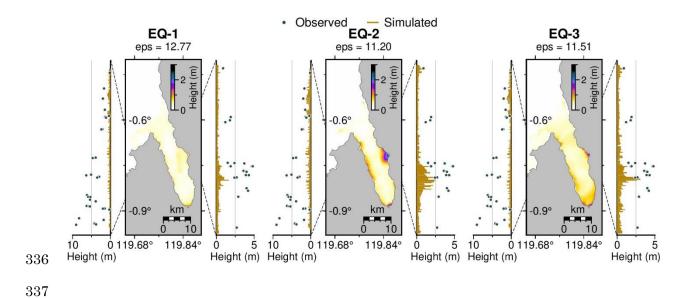


Figure 5. Comparison of simulated and observed runup for three earthquake-only source models EQ1, EQ-2, and EQ-3. The observed data (i.e., circles) is based on Omira et al. (2019). "eps" indicates

- 340 misfit ϵ based on Equation (1).
- 341
- 342

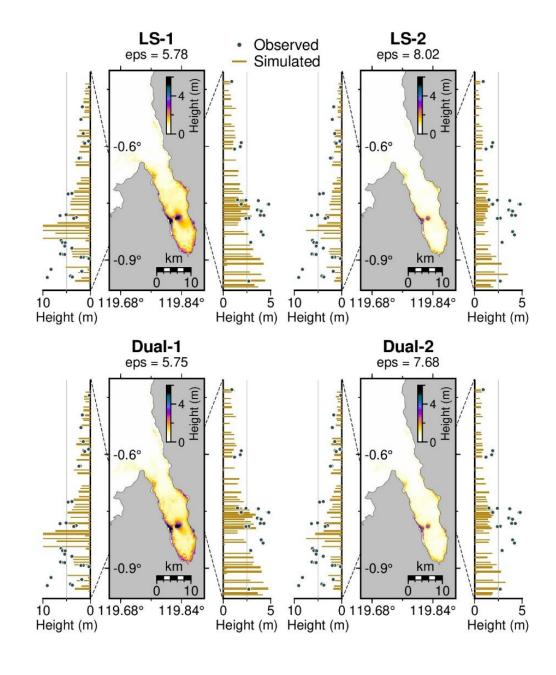


Figure 6. Top) Comparison of simulated and observed runup for two landslide-only source models LS-1 and LS-2. Bottom) Comparison of simulated and observed runup for two dual (combined earthquake and landslide) source models Dual-1 and Dual-2. The observed data (i.e., circles) is based on Omira et al. (2019). "eps" indicates misfit ϵ based on Equation (1).

349

350

5. Discussions

353	In addition to our final dual model, Dual-1 in Table 4 and Figure 4, three more dual models were
354	proposed in the past few years by Heidarzadeh et al. (2019), Schambach et al. (2021), and Williamson
355	et al. (2020) (Table 1). There are two differences between our model (Dual-1) and the other three
356	modes: (1) our model is based on a credible submarine landslide (supported by an actual post-event
357	bathymetric survey) while the other three models either only involve coastal subaerial landslides or
358	include a hypothetical submarine landslide; (2) our model includes a single large submarine landslide
359	whereas the other models incorporate seven (Schambach et al., 2021) and 11 (Williamson et al., 2020)
360	coastal landslides although the model by Williamson et al. (2020) also involves a hypothetical
361	submarine landslide whose location was previously proposed by Heidarzadeh et al. (2019).
362	Similar to this study, the dual models of Schambach et al. (2021) and Williamson et al. (2020) are
363	also validated using tide gauge records and runup data. By comparing the results of modelling from
364	our dual model, Dual-1 in Table 4 and Figure 4, with those of the aforesaid models, it is found that all
365	dual models approximately equally reproduce the observation data, and it is hard to differentiate them
366	in terms of quality of fit between simulations and observations. This may appear unexpected given the
367	significant difference among these dual models. We speculate that such little differences among the
368	results of different dual models could be attributed to: (i) Tsunami observations for the 2018 Palu
369	event are sparse and scant; thus, do not provide sufficient redundancy to distinguish among models;
370	and (ii) The Palu Bay area is a very narrow and small basin (length and width of the Palu Bay are

371	approximately 30 km and 7 km, respectively); therefore, different external forcings in a similar range
372	(such as the three dual models discussed here) may not be distinguishable by this small basin.
373	From a natural hazard mitigation point of view, it is important to note that the largest tsunami
374	heights and damage were due to the submarine landslide rather than the earthquake (Figures 5-6). For
375	example, Figure 5 shows that the earthquake-only models produce maximum runup heights of
376	approximately 2 m whereas the observed runup heights were more than 10 m. In fact, the 2018 Palu
377	catastrophe was mostly generated by the submarine landslide which was triggered by the earthquake.
378	This is called a cascading effect in the natural hazards literature where a primary hazard (earthquake)
379	cascades to other hazards (landslide) (Adams and Heidarzadeh, 2021; Heidarzadeh and Rabinovich,
380	2020) (Figure 7).

Figure 7. Sketch showing the final dual (earthquake and submarine landslide) model proposed in this
 study for the 28 September 2018 Palu (Sulawesi) tsunami. This sketch highlights the cascading
 multi-hazard nature of the 2018 Palu tsunami catastrophe.

6. Conclusions

388	We studied the source mechanism of the 2018 Palu (Sulawesi) tsunami through a numerical
389	modelling approach accompanied with validation of the modelling results using observation data.
390	Main findings are:
391	• Since limited observations are available for the 2018 Palu tsunami, they could be reproduced
392	by multiple source models of different types (earthquake, landslide, and dual models). This is
393	likely the reason that several source models are published for this tsunami.
394	• The earthquake source of the tsunami underestimates the surveyed runup by an order of
395	magnitude, which indicates that a secondary source (e.g., a landslide) was most likely
396	involved. Therefore, we conclude that the tsunami was most likely the result of a dual
397	earthquake and landslide source.
398	• Although most of the existing landslide models for the Palu event are of the type of subaerial
399	coastal landslides, we show that the existing tsunami observations can be approximately
400	reproduced using a submarine landslide located inside the Palu Bay whose location is
401	confirmed through marine bathymetric surveys.
402	• Our final dual model comprises of the USGS earthquake model and a submarine landslide.
403	The USGS earthquake model has a length of 264 km, width of 37 km and a slip in the range of
404	0 - 8.5 m. The submarine landslide model has a length of 1.0 km width of 2.0 km and a
405	thickness of 80.0 m located at 119.823 °E and -0.792 °S.

406	
-----	--

407	Acknowledgements
408	A number of figures were drafted using the GMT software (Wessel and Smith, 1998).
409	
410	Funding
411	This research is funded by the Royal Society (the United Kingdom) grant number CHL/R1/180173.
412	Additional funding received from the Lloyd's Tercentenary Research Foundation, the Lighthill Risk
413	Network, and the Lloyd's Register Foundation-Data Centric Engineering Programme of the Alan
414	Turing Institute (UK).
415	
416	Data and Resources
417	All data used in this study are given in the body of the article.
418	
419	Declaration of interest
420	The authors declare that they have no competing interests regarding the work presented in this paper.
421	
422	References
423	Adams, K., M. Heidarzadeh. 2021. "A multi-hazard risk model with cascading failure pathways for the
424	Dawlish (UK) railway using historical and contemporary data". International Journal of Disaster

- 425 Risk Reduction 56: 102082. https://doi.org/10.1016/j.ijdrr.2021.102082.
- 426 Aránguiz, R., M. Esteban, H. Takagi, T. Mikami, T. Takabatake, M. Gómez, J. González, T.
- 427 Shibayama, R. Okuwaki, Y. Yagi, K. Shimizu. 2020. "The 2018 Sulawesi tsunami in Palu city as
- 428 a result of several landslides and coseismic tsunamis." Coastal Engineering Journal 62(4): 445-
- 429 459.
- 430 Arikawa, T., A. Muhari, Y. Okumura, Y. Dohi, B. Afriyanto, K. A. Sujatmiko, F. Imamura. 2018.
- 431 "Coastal subsidence induced several tsunamis during the 2018 Sulawesi earthquake." Journal of
- 432 Disaster Research 13: sc20181201.
- 433 Courant, R., K. Friedrichs, H. Lewy. 1928. "Über die partiellen Differenzengleichungen der
- 434 mathematischen Physik." Mathematische Annalen 100 (1): 32-74.
- 435 Frederik, M.C.G., Udrekh, R. Adhitama, N. D. Hananto, Asrafil, S. Sahabuddin, M. Irfan, O. Moefti,
- 436 D. B. Putra, and B. F. Riyalda. 2019. "First Results of a Bathymetric Survey of Palu Bay, Central
- 437 Sulawesi, Indonesia following the Tsunamigenic Earthquake of 28 September 2018." Pure and
- 438 Applied Geophysics 176: 3277–3290. <u>https://doi.org/10.1007/s00024-019-02280-7</u>.
- 439 Fujii, Y., K. Satake. 2006. "Source of the July 2006 West Java tsunami estimated from tide gauge
- 440 records." Geophysical Research Letters 33 (24).
- 441 Geoware. 2011. "The tsunami travel times (TTT) package." Available at http://www.geoware-
- 442 <u>online.com/tsunami.html</u>.
- 443 Grilli, S. T., C. Zhang, J. T. Kirby, A. R. Grilli, D. R. Tappin, S. F. Watt, et al. 2021. "Modeling of the

- 444 Dec. 22nd 2018 Anak Krakatau volcano lateral collapse and tsunami based on recent field
- surveys: Comparison with observed tsunami impact." Marine Geology 440:
- 446 doi:10.1016/j.margeo.2021.106566.
- 447 Gusman, A. R., P. Supendi, A. D. Nugraha, W. Power, H. Latief, H. Sunendar, et al. 2019. "Source
- 448 model for the tsunami inside Palu Bay following the 2018 Palu earthquake, Indonesia."
- 449 Geophysical Research Letters 46: 8721–8730. https://doi.org/10.1029/ 2019GL082717.
- 450 He, L., G. Feng, Z. Li, Z. Feng, H. Gao, X. Wu. 2019. "Source parameters and slip distribution of the
- 2018 Mw 7.5 Palu, Indonesia earthquake estimated from space-based geodesy." Tectonophysics
 772: 228216.
- 453 Heidarzadeh, M., A.R. Gusman, A. Patria, B. T. Widyantoro. 2022. "Potential landslide origin of the
- 454 Seram Island tsunami in Eastern Indonesia on 16 June 2021 following an Mw 5.9 earthquake".
- 455 Bulletin of the Seismological Society of America, <u>https://doi.org/10.1785/0120210274</u>.
- 456 Heidarzadeh, M., K. Satake. 2015. "Source properties of the 17 July 1998 Papua New Guinea tsunami
- 457 based on tide gauge records." Geophysical Journal International 202 (1): 361-369.
- 458 Heidarzadeh, M., K. Satake. 2017. "A Combined Earthquake-Landslide Source Model for the Tsunami
- from the 27 November 1945 M 8.1 Makran Earthquake." Bulletin of the Seismological Society of
- 460 America 107 (2): 1033-1040. https://doi.org/10.1785/0120160196.
- 461 Heidarzadeh, M., A. Muhari, A. B. Wijanarto. 2019. "Insights on the source of the 28 September 2018
- 462 Sulawesi tsunami, Indonesia based on spectral analyses and numerical simulations." Pure and

- 463 Applied Geophysics 176: 25–43. <u>https://doi.org/10.1007/s00024-018-2065-9</u>.
- 464 Heidarzadeh, M., A. B. Rabinovich. 2020. "Combined Hazard of Typhoon-Generated Meteorological
- 465 Tsunamis and Storm Surges along the Coast of Japan". Natural Hazards 106: 1639–
- 466 1672. https://doi.org/10.1007/s11069-020-04448-0.
- 467 Heidarzadeh, M., T. Ishibe, O. Sandanbata, A. Muhari, and A. B. Wijanarto. 2020. "Numerical
- 468 modeling of the subaerial landslide source of the 22 December 2018 Anak Krakatoa volcanic
- tsunami, Indonesia." Ocean Engineering 195: 106733.
- 470 <u>https://doi.org/10.1016/j.oceaneng.2019.106733</u>.
- 471 Jamelot, A., A. Gailler, P. Heinrich, A. Vallage, J. Champenois. 2019. "Tsunami simulations of the
- 472 Sulawesi Mw 7.5 event: comparison of seismic sources issued from a tsunami warning context
- 473 versus post-event finite source." Pure and Applied Geophysics 176(8): 3351-3376.
- 474 Lee, S. J., T. P. Wong, T. C. Lin, T. Y. Liu. 2019. "Complex triggering supershear rupture of the
- 475 2018 M W 7.5 Palu, Indonesia, earthquake determined from teleseismic source
- 476 inversion." Seismological Research Letters 90(6): 2111-2120.
- 477 Liu, P. F., P. Higuera, S. Husrin, G. S. Prasetya, J. Prihantono, H. Diastomo, et al. 2020. "Coastal
- 478 landslides in Palu Bay during 2018 Sulawesi earthquake and tsunami." Landslides 17(9): 2085479 2098.
- 480 Muhari, A., F. Imamura, T. Arikawa, A. R. Hakim, B. Afriyanto. 2018. "Solving the puzzle of the
- 481 September 2018 Palu, Indonesia, tsunami mystery: clues from the tsunami waveform and the

- 482 initial field survey data." Journal of Disaster Research 13: sc20181108.
- 483 Mulia, I. E., S. Watada, T. -C. Ho, K. Satake, Y. Wang, A. Aditiya. 2020. "Simulation of the 2018
- 484 tsunami due to the flank failure of Anak Krakatau volcano and implication for future observing
- 485 systems." Geophysical Research Letters 47: e2020GL087334.
- 486 https://doi.org/10.1029/2020GL087334.
- 487 Nakata, K., A. Katsumata, A. Muhari. 2020. "Submarine landslide source models consistent with
- 488 multiple tsunami records of the 2018 Palu tsunami, Sulawesi, Indonesia." Earth Planets and
- 489 Space 72(1): 1-16.
- 490 Natawidjaja, D. H., M. R. Daryono, G. Prasetya, P. L. Liu, N. D. Hananto, W. Kongko, et al. 2021.
- 491 "The 2018 M w7. 5 Palu 'supershear' earthquake ruptures geological fault's multisegment
- 492 separated by large bends: results from integrating field measurements, LiDAR, swath bathymetry
- 493 and seismic-reflection data." Geophysical Journal International 224 (2): 985-1002.
- 494 Okada Y. 1985. "Surface deformation due to shear and tensile faults in a half-space." Bulletin of the
- 495 Seismological Society of America 75: 1135–1154.
- 496 Okal, E. A., C. E. Synolakis. 2004. "Source discriminants for near-field tsunamis." Geophysical
- 497 Journal International 158(3): 899–912. <u>https://doi.org/10.1111/j.1365-246X.2004.0247.x</u>.
- 498 Omira, R., G. G. Dogan, R. Hidayat, S. Husrin, A. Annunziato, C. Proietti, P. Probst, M. A. Paparo, M.
- 499 Wronna, A. Zaytsev, A. C. Yalciner, et al. 2019. "The September 28th, 2018, tsunami in Palu-
- 500 Sulawesi, Indonesia: A post-event field survey." Pure and Applied Geophysics 176(4): 1379-

501 1395.

502	Pakoksung,	K., A. Su	ppasri, F.	Imamura,	C.A	thanasius,	A. Omang,	A. Muhari.	2019.	"Simulation o	of

- 503 the submarine landslide tsunami on 28 September 2018 in Palu Bay, Sulawesi Island, Indonesia,
- using a two-layer model." Pure and Applied Geophysics 176(8): 3323-3350.
- 505 Pranantyo, I.R., M. Heidarzadeh, P.R. Cummins. 2021. "Complex tsunami hazards in eastern
- 506 Indonesia from seismic and non-seismic sources: Deterministic modelling based on historical and
- 507 modern data". Geoscience Letters, 8(1): 1-16. <u>https://doi.org/10.1186/s40562-021-00190-y</u>
- 508 Satake, K., M. Heidarzadeh, M. Quiroz, R. Cienfuegos. 2020. "History and features of trans-oceanic
- 509 tsunamis and implications for paleo-tsunami studies."" Earth-Science Reviews:
- 510 https://doi.org/10.1016/j.earscirev.2020.103112.
- 511 Satake, K., Y. Tanioka. 2003. "The July 1998 Papua New Guinea earthquake: Mechanism and
- 512 quantification of unusual tsunami generation." Pure and Applied Geophysics 160 (10): 2087-

513 2118.

- 514 Satake, K., Y. Nishimura, P. S. Putra, A. R. Gusman, H. Sunendar, Y. Fujii, Y., et al. 2013. "Tsunami
- source of the 2010 Mentawai, Indonesia earthquake inferred from tsunami field survey and
- 516 waveform modeling." Pure and Applied Geophysics 170 (9–10): 1567–1582.
- 517 Schambach, L., S. T. Grilli, D. R. Tappin. 2021. "New high-resolution modeling of the 2018 Palu
- 518 tsunami, based on supershear earthquake mechanisms and mapped coastal landslides, supports a
- 519 dual source." Frontiers in Earth Science 8: 627.

520	Somphong, C., A. Suppasri, K. Pakoksung, T. Nagasawa, Y. Narita, R. Tawatari, et al. 2022.
521	"Submarine landslide source modeling using the 3D slope stability analysis method for the 2018
522	Palu, Sulawesi, tsunami." Natural Hazards and Earth System Sciences 22(3): 891-907.
523	Syamsidik, Benazir, M. Umar, G. Margaglio, A. Fitrayansyah. 2019. "Post-tsunami survey of the 28
524	September 2018 tsunami near Palu Bay in Central Sulawesi, Indonesia: Impacts and challenges to
525	coastal communities." International Journal of Disaster Risk Reduction 38: 101229.
526	Synolakis, C. E., J. P. Bardet, J. C. Borrero, H. L. Davies, E. A. Okal, E. A. Silver, E. A. Silver, S.
527	Sweet, and D. R. Tappin. 2002. "The slump origin of the 1998 Papua New Guinea
528	tsunami." Proceedings of Royal Society of London A 458: 763-789.
529	Takagi, H., M. B. Pratama, S. Kurobe, M. Esteban, R. Aránguiz, B. Ke. 2019. "Analysis of generation
530	and arrival time of landslide tsunami to Palu City due to the 2018 Sulawesi
531	earthquake." Landslides 16(5): 983-991.
532	Tappin, D. R., P. Watts, S. T. Grilli. 2008. "The Papua New Guinea tsunami of 17 July 1998: anatomy
533	of a catastrophic event." Natural Hazards and Earth System Sciences 8 (2): 243-266.
534	Tinti, S., A. Armigliato, A. Manucci, G. Pagnoni, F. Zaniboni, A.C. Yalçiner, Y. Altinok. 2006. "The
535	generating mechanisms of the August 17, 1999 izmit bay (turkey) tsunami: Regional (tectonic)
536	and local (mass instabilities) causes". Marine Geology 225(1-4): 311-330.
537	https://doi.org/10.1016/j.margeo.2005. 09.010.

538 Ulrich, T., S. Vater, E. H. Madden, J. Behrens, Y. van Dinther, I. Van Zelst, E. J. Fielding, C. Liang, A-

539	A. Gabriel. 2019. "Coupled, physics-based modeling reveals earthquake displacements are
540	critical to the 2018 Palu, Sulawesi tsunami." Pure and Applied Geophysics 176 (10): 4069-4109.
541	USGS (The United States Geological Survey). 2018. "Finite Fault Model for M 7.5 - 72 km N of Palu,
542	Indonesia." Available online at:
543	https://earthquake.usgs.gov/earthquakes/eventpage/us1000h3p4/finite-fault (accessed on 21
544	December 2021).
545	Wang, X., P. LF. Liu. 2006. "An analysis of 2004 Sumatra earthquake fault plane mechanisms and
546	Indian Ocean tsunami." Journal of Hydraulic Research 44: 147–154.
547	Wang, Y., W. Feng, K. Chen, S. Samsonov. 2019. "Source characteristics of the 28 September 2018
548	Mw 7.4 Palu, Indonesia, earthquake derived from the advanced land observation satellite 2
549	data." Remote Sensing 11(17): 1999.
550	Watts, P., S. T. Grilli, D. R. Tappin, G. J. Fryer. 2005. "Tsunami generation by submarine mass failure.
551	II: Predictive equations and case studies." Journal of Waterway Port Coastal and Ocean
552	Engineering 131 (6): 298-310.
553	Weatherall P., K. M. Marks, M. Jakobsson, et al. 2015. "A new digital bathymetric model of the
554	world's oceans." Earth Space Science 2: 331–345.
555	Wessel, P., W. H. F. Smith. 1998. "New, improved version of generic mapping tools released." EOS
556	Transactions of AGU 79 (47): 579.
557	Williamson, A. L., D. Melgar, X. Xu, C. Milliner. 2020. "The 2018 Palu tsunami: Coeval landslide and

- 558 coseismic sources." Seismological Society of America 91(6): 3148-3160.
- 559 Yolsal-Çevikbilen, S., T. Taymaz. 2019. "Source characteristics of the 28 September 2018 Mw 7.5
- 560 Palu-Sulawesi, Indonesia (SE Asia) earthquake based on inversion of teleseismic body
- 561 waves." Pure and Applied Geophysics 176 (10): 4111-4126.

563	Table cap	otions
563	Table cap	tions
	I	

564	
565	Table 1. A list of some of the published source models for the September 2018 Palu (Sulawesi)
566	tsunami.
567	
568	Table 2. Earthquake source models used in this study for modelling the 28 September 2018 Palu
569	(Sulawesi) earthquake and tsunami.
570	
571	Table 3. Parameters of the two landslide scenarios considered in this study for modelling the 28
572	September 2018 Palu (Sulawesi) tsunami.
573	
574	Table 4. Information of two dual earthquake and landslide source models considered in this study for
575	modelling the 28 September 2018 Palu (Sulawesi) tsunami.
576	
577	*** End of Table captions ***
578	

579 Figure captions

581	Figure 1. Map showing Eastern Indonesia, the site of the 28 September 2018 Palu (Sulawesi)
582	earthquake and tsunami. The red star indicates the epicenter of the earthquake, the green squares
583	are the locations of tide gauge stations, and the dashed contours show the tsunami travel times
584	(TTT) in minutes calculated using the TTT software of Geoware (2011). The Palu-Koro strike-slip
585	fault system (PKF) is shown by a dashed thick straight line. The focal mechanism is based on the
586	United States Geological Survey (USGS) catalogue. The pink rectangle demonstrates the fault
587	extension for the 2018 Palu earthquake based on Lee et al. (2019).
588	
589	Figure 2. a) Three published seismic source models for the 28 September 2018 Palu (Sulawesi) M_w
590	7.5 earthquake namely EQ-1 (USGS, 2018), EQ-2 (Jamelot et al., 2019), and EQ-3 (Wang et al.,
591	2019). b) Comparison of observed and modelled tsunami waveforms at three tide gauge stations
592	due to the three aforementioned earthquake source models. "U" and "S" denote "uplift" and
593	"subsidence", respectively. "eps" indicates misfit ϵ based on Equation (1). Misfits ("eps") are not
594	calculated for Lahat as the tsunami signal is not clear at this station.
595	
596	Figure 3. a) Two landslide models LS-1 and LS-2 considered in this study with corresponding initial
597	sea surface displacements. b) Comparison of observed and modelled tsunami waveforms at three
598	tide gauge stations due to the two aforementioned landslide scenarios. "eps" indicates misfit ϵ
599	based on Equation (1). Misfits ("eps") are not calculated for Mamuju and Lahat as the simulated
600	waves are very small at these stations.

603	Figure 4. a) Two dual (combined earthquake and submarine landslide) source models Dual-1 and
604	Dual-2, which are the combination of EQ-1 with LS-1 and LS-2, respectively, with corresponding
605	crustal deformation and initial sea surface displacements. b) Comparison of observed and
606	modelled tsunami waveforms at three tide gauge stations due to the two aforementioned dual
607	source models. "eps" indicates misfit ϵ based on Equation (1). Misfits ("eps") are not calculated
608	for Lahat as the tsunami signal is not clear at this station.
609	
610	Figure 5. Comparison of simulated and observed runup for three earthquake-only source models EQ-
611	1, EQ-2, and EQ-3. The observed data (i.e., circles) is based on Omira et al. (2019). "eps" indicates
612	misfit ϵ based on Equation (1).
613	
614	Figure 6. Top) Comparison of simulated and observed runup for two landslide-only source models
615	LS-1 and LS-2. Bottom) Comparison of simulated and observed runup for two dual (combined
616	earthquake and landslide) source models Dual-1 and Dual-2. The observed data (i.e., circles) is
617	based on Omira et al. (2019). "eps" indicates misfit ϵ based on Equation (1).
618	
619	Figure 7. Sketch showing the final dual (earthquake and submarine landslide) model proposed in this
620	study for the 28 September 2018 Palu (Sulawesi) tsunami. This sketch highlights the cascading
621	multi-hazard nature of the 2018 Palu tsunami catastrophe.
622	

***** End of Figure captions *****